-
Organic-inorganic halide perovskite materials are widely used in solar cells because of their excellent photoelectric properties. However, the stability and lead toxicity problems associated with materials and devices have restrict their production and development. Compared with the hybrid perovskite, the inorganic lead-free perovskite Cs3Bi2I9 has attracted wide attention because of its stronger stability and environmental friendliness. The Cs3Bi2I9 has three crystal types: monoclinic type, trigonal type, and hexagonal type. At present, the researches of Cs3Bi2I9 focus mainly on the hexagonal phase. In this paper, based on the first principles of density functional theory, the electronic properties, carrier effective mass values, stabilities, and optical properties of Cs3Bi2I9 monoclinic, trigonal, and hexagonal phases are studied theoretically. It is suggested that the stabilities of the three crystal phases are similar, and the direct band gap (1.21 eV) of the trigonal phase would be noticeable. For the three phases, their effective mass values show that their properties are the same along both the a direction and the b direction, but different along the c direction. The effective mass of electron of the trigonal phase is significantly smaller along the a-direction than along the c-direction. Corresponding to the red shift phenomenon of optical properties, the trigonal phase shows the better optical absorption performance than other phases. In addition, the optical properties also show that the properties are the same along the a direction and the b direction, but different along the c direction, and the optical absorption performance is better along the a-direction than along the c-direction.
-
Keywords:
- perovskite /
- Cs3Bi2I9 /
- first-principles calculation
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[3] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 69 207401
Google Scholar
Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401
Google Scholar
[4] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Hua J 2015 Science 347 967
Google Scholar
[6] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519
Google Scholar
[7] https://www.nrel.gov/pv/cell-efficiency.html [2020-11-9]
[8] Bella F, Griffini G, Correa-Baena J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203
Google Scholar
[9] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310
Google Scholar
[10] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989
Google Scholar
[11] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[12] Gratia P, Grancini G, Audinot J N, Jeanbourquin X, Mosconi E, Zimmermann I, Dowsett D, Lee Y, Grätzel M, De Angelis F, Sivula K, Wirtz T, Nazeeruddin M K 2016 J. Am. Chem. Soc. 138 15821
Google Scholar
[13] Philippe B, Saliba M, Correa-Baena J P, Cappel U B, Turren-Cruz S H, Grätzel M, Hagfeldt A, Rensmo H 2017 Chem. Mater. 29 3589
Google Scholar
[14] Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604
Google Scholar
[15] Luo J, Wang X, Li S, et al. 2018 Nature 563 541
Google Scholar
[16] Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312
Google Scholar
[17] Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M 2016 ACS Energy Lett. 1 840
Google Scholar
[18] Yao D, Hoang M T, Wang H 2021 Small Methods 5 2001147
Google Scholar
[19] Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X 2021 Mater. Horiz. 8 1367
Google Scholar
[20] Zhang Y X, Liu Y C, Xu Z, Ye H C, Yang Z, You J X, Liu M, He Y H, Kanatzidis M G, Liu S Z (Frank) 2020 Nat. Commun. 11 2304
Google Scholar
[21] Xu Q, Yang D, Lv J, Sun Y Y, Zhang L 2018 Small Methods 2 1700316
Google Scholar
[22] Li Y, Yang K 2019 Energy Environ. Sci. 12 2233
Google Scholar
[23] Gao Y, Pan Y, Zhou F, Niu G, Yan C 2021 J. Mater. Chem. A 9 11931
Google Scholar
[24] Miller N C, Bernechea M 2018 APL Mater. 6 084503
Google Scholar
[25] Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S, Wu H 2020 Adv. Sci. 7 1903143
Google Scholar
[26] Park B W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson E M J 2015 Adv. Mater. 27 6806
Google Scholar
[27] Ghosh B, Chakraborty S, Wei H, Guet C, Li S, Mhaisalkar S, Mathews N 2017 J. Phys. Chem. C 121 17062
Google Scholar
[28] Hong K H, Kim J, Debbichi L, Kim H, Im S H 2017 J. Phys. Chem. C 121 969
Google Scholar
[29] Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 CrystEngComm 20 4935
Google Scholar
[30] Yu B B, Liao M, Yang J, Chen W, Zhu Y, Zhang X, Duan T, Yao W, Wei S H, He Z 2019 J. Mater. Chem. A 7 8818
Google Scholar
[31] Arakcheeva A V, Chapuis G, Meyer M 2001 Zeitschrift für Kristallographie - Crystalline Materials 216 199
Google Scholar
[32] Ivanov Y N, Sukhovskii A A, Lisin V V, Aleksandrova I P 2001 Inorg. Mater. 37 623
Google Scholar
[33] Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 Journal of Materials Chemistry A 7 8818
[34] Johansson M B, Zhu H, Johansson E M J 2016 J. Phys. Chem. Lett. 7 3467
Google Scholar
[35] Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213
Google Scholar
[36] Tewari N, Shivarudraiah S B, Halpert, J E 2021 Nano Lett. 21 5578
Google Scholar
[37] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[38] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[39] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406
Google Scholar
[40] 汪志刚, 曾祥明, 张杨, 黄娆, 文玉华 2015 物理化学学报 31 1677
Google Scholar
Wang Z G, Zeng X M, Zhang Y, Huang R, Wen Y H 2015 Acta Phys. -Chim. Sin. 31 1677
Google Scholar
[41] Sun Y J, Wang D, Shuai Z G 2016 J. Phys. Chem. C 120 21866
Google Scholar
[42] Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999
Google Scholar
[43] Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, H-E M M S, Khenata R, Boochani A, Solaymani S, Thapa R K 2017 Mater. Chem. Phys. 186 620
Google Scholar
-
表 1 Cs3Bi2I9的晶格常数和晶面角
Table 1. The lattice constant and face angle of Cs3Bi2I9.
表 2 Cs3Bi2I9沿不同方向的载流子有效质量(mo是电子质量)
Table 2. Carrier effective mass of Cs3Bi2I9 along different directions. (The mo is the electronic mass.)
Mono Trig Hexa ${m_{\rm{e} }^*}({\rm{a} })/m_{\rm{o}}$ 0.86 0.26 0.28 ${m_{\rm{e}}^*}({\rm{c} })/m_{\rm{o}}$ 1.48 0.48 1.45 ${m_{\rm{h}}^*} ({\rm{a} })/m_{\rm{o}}$ 0.80 1.02 1.15 ${m_{\rm{h} }^*}({\rm{c} })/m_{\rm{o} }$ 1.16 0.85 0.77 表 3 介电函数实部ε1(0)和实部最大值ε1Max(ω)
Table 3. The real part of the dielectric function ε1(0) and the maximum value of the real part ε1Max(ω).
Mono Trig Hexa ε1(0) 6.12 7.10 6.14 ε1Max(ω) 8.91 9.43 8.93 -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[3] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 69 207401
Google Scholar
Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401
Google Scholar
[4] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[5] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Hua J 2015 Science 347 967
Google Scholar
[6] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519
Google Scholar
[7] https://www.nrel.gov/pv/cell-efficiency.html [2020-11-9]
[8] Bella F, Griffini G, Correa-Baena J P, Saracco G, Grätzel M, Hagfeldt A, Turri S, Gerbaldi C 2016 Science 354 203
Google Scholar
[9] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310
Google Scholar
[10] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Grätzel M 2016 Energy Environ. Sci. 9 1989
Google Scholar
[11] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[12] Gratia P, Grancini G, Audinot J N, Jeanbourquin X, Mosconi E, Zimmermann I, Dowsett D, Lee Y, Grätzel M, De Angelis F, Sivula K, Wirtz T, Nazeeruddin M K 2016 J. Am. Chem. Soc. 138 15821
Google Scholar
[13] Philippe B, Saliba M, Correa-Baena J P, Cappel U B, Turren-Cruz S H, Grätzel M, Hagfeldt A, Rensmo H 2017 Chem. Mater. 29 3589
Google Scholar
[14] Akkerman Q A, Manna L 2020 ACS Energy Lett. 5 604
Google Scholar
[15] Luo J, Wang X, Li S, et al. 2018 Nature 563 541
Google Scholar
[16] Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312
Google Scholar
[17] Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M 2016 ACS Energy Lett. 1 840
Google Scholar
[18] Yao D, Hoang M T, Wang H 2021 Small Methods 5 2001147
Google Scholar
[19] Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X 2021 Mater. Horiz. 8 1367
Google Scholar
[20] Zhang Y X, Liu Y C, Xu Z, Ye H C, Yang Z, You J X, Liu M, He Y H, Kanatzidis M G, Liu S Z (Frank) 2020 Nat. Commun. 11 2304
Google Scholar
[21] Xu Q, Yang D, Lv J, Sun Y Y, Zhang L 2018 Small Methods 2 1700316
Google Scholar
[22] Li Y, Yang K 2019 Energy Environ. Sci. 12 2233
Google Scholar
[23] Gao Y, Pan Y, Zhou F, Niu G, Yan C 2021 J. Mater. Chem. A 9 11931
Google Scholar
[24] Miller N C, Bernechea M 2018 APL Mater. 6 084503
Google Scholar
[25] Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S, Wu H 2020 Adv. Sci. 7 1903143
Google Scholar
[26] Park B W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson E M J 2015 Adv. Mater. 27 6806
Google Scholar
[27] Ghosh B, Chakraborty S, Wei H, Guet C, Li S, Mhaisalkar S, Mathews N 2017 J. Phys. Chem. C 121 17062
Google Scholar
[28] Hong K H, Kim J, Debbichi L, Kim H, Im S H 2017 J. Phys. Chem. C 121 969
Google Scholar
[29] Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 CrystEngComm 20 4935
Google Scholar
[30] Yu B B, Liao M, Yang J, Chen W, Zhu Y, Zhang X, Duan T, Yao W, Wei S H, He Z 2019 J. Mater. Chem. A 7 8818
Google Scholar
[31] Arakcheeva A V, Chapuis G, Meyer M 2001 Zeitschrift für Kristallographie - Crystalline Materials 216 199
Google Scholar
[32] Ivanov Y N, Sukhovskii A A, Lisin V V, Aleksandrova I P 2001 Inorg. Mater. 37 623
Google Scholar
[33] Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 Journal of Materials Chemistry A 7 8818
[34] Johansson M B, Zhu H, Johansson E M J 2016 J. Phys. Chem. Lett. 7 3467
Google Scholar
[35] Zhang L, Liu C, Wang L, Liu C, Wang K, Zou B 2018 Angew. Chem. Int. Ed. 57 11213
Google Scholar
[36] Tewari N, Shivarudraiah S B, Halpert, J E 2021 Nano Lett. 21 5578
Google Scholar
[37] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
Google Scholar
[38] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[39] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406
Google Scholar
[40] 汪志刚, 曾祥明, 张杨, 黄娆, 文玉华 2015 物理化学学报 31 1677
Google Scholar
Wang Z G, Zeng X M, Zhang Y, Huang R, Wen Y H 2015 Acta Phys. -Chim. Sin. 31 1677
Google Scholar
[41] Sun Y J, Wang D, Shuai Z G 2016 J. Phys. Chem. C 120 21866
Google Scholar
[42] Even J, Pedesseau L, Jancu J M, Katan C 2013 J. Phys. Chem. Lett. 4 2999
Google Scholar
[43] Rai D P, Sandeep, Shankar A, Sakhya A P, Sinha T P, Merabet B, H-E M M S, Khenata R, Boochani A, Solaymani S, Thapa R K 2017 Mater. Chem. Phys. 186 620
Google Scholar
Catalog
Metrics
- Abstract views: 8914
- PDF Downloads: 292
- Cited By: 0