-
大模场单模光纤在高功率激光器、高功率光传输和高灵敏度传感器等领域具有重要意义. 设计了一种新型超低损耗大模场单模光纤,包层空气孔由掺氟硅玻璃棒代替,掺氟硅玻璃棒排列呈六重准晶体结构. 基于有限元法对光纤的传输特性进行了数值模拟. 研究了光纤结构参量变化对模式特性和有效模场面积的影响. 结果表明:波长在1064 nm处,有效模场面积高达5197 μm2,基模的限制性损耗低于10-5 dB/km,解决了大模场与低损耗之间的冲突;在1064–2000 nm波段内,基模与二阶模的限制性损耗相差7个量级,实现单模传输;半径为10 cm时,弯曲损耗小于 0.01 dB/m,具有良好的低弯曲损耗特性. 此光纤能够提高光纤热损伤阈值,减少接续损耗,全固态结构有效避免了空气孔塌陷,简化制备工艺,对高功率激光传输、光纤激光器和光纤放大器的发展具有重要意义.Large-mode-area single-mode fibers play an important role in the field of high power lasers, high power delivery, and high sensitivity sensor. A novel all-solid large-mode-area single-mode photonic quasi-crystal fiber with extremely low loss is proposed. This kind of fiber contains a hexagonal quasi-crystal array of slightly fluorine-doped silica rods in a silica background. Its structure and properties are simulated numerically in virtue of finite element method. Effects of variation of d/Λ, or Λ on fiber loss and effective mode-area properties are investigated. Numerical results demonstrate that an effective mode-area of 5197 μm2, low confinement loss of 10-5 dB/km for fundamental mode and high confinement loss of 100 dB/km of second-order mode at a wavelength of 1064 nm. Numerical simulations show that this fiber can operate effectively in single-mode and remove the conflict between large-mode-area and low loss. Moreover, the bending loss for a bending radius of 10 cm is as low as 0.01 dB/m. This fiber can increase the thermal damage threshold of the PQF, decrease the coupling loss and simplify the fabrication process. The design of new fibers is highly meaningful for the development of high power delivery, fiber lasers, and fiber amplifiers.
-
Keywords:
- large-mode-area /
- photonic quasi-crystal fibers /
- confinement loss /
- bending loss
[1] Jeong Y, Sahu J K, Payne D N 2004 Electron. Lett. 40 470
[2] Fini J M 2007 J. Opt. Soc. Am. B 24 1669
[3] Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈伟, 柴路, 王清月 2008 57 5045]
[4] Yang H R, Li X Y, Hong W, Hao J H 2012 Chin. Phys. B 21 024211
[5] Jin C J, Cheng B Y, Man B Y, Li Z L, Zhang D Z 1999 Appl. Phys. Lett. 75 1848
[6] Wang Y Q, Hu X Y, Xu X S, Cheng B Y, Zhang D Z 2003 Phys. Rev. B 68 165106
[7] Notomi M, Suzuki H, Tamamura T, Edagawa K 2004 Phys. Rev. Lett. 92 123906
[8] Wang K 2006 Phys. Rev. B 73 235122
[9] Rochstuhl C, Lederer F 2006 New J. Phys. 206 233390
[10] Zhang J Y, Tam H L, Wong W H, Pun Y B The 5th Pacific Rim Conference on Lasers and Electro-Optics Taipei China, Dec15–19, 2003 p117
[11] Romero-Vivas J, Chigrin D, Lavrinenko A, Lavrinenko V, Sotomayor Torres M 2005 Opt. Express 13 826
[12] Dyachenko P N, Miklyaev Y V 2006 SPIE. 6182 61822I
[13] Knight J C, Birks T A, Cregan R F, Russell P S J 1998 Electron. Lett. 34 1374
[14] Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547
[15] Fang H, Lou S Q, Guo T Y, Yao L, Li H L, Jian S S 2008 Chin. Phys. B 17 1029
[16] Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 59 4041]
[17] Ghosh S, Dasgupta S, Varshney R K, Richardson D J, Pal B P 2011 Opt. Express 19 21295
[18] Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034201
[19] Fleming J W, Wood D L 1983 Applied Optics 22 3102
[20] Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron 33 359
[21] Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]
[22] Haxha S, Ademgil H 2008 Opt. Commun. 281 278
[23] Mortensen N A 2002 Opt. Express 10 341
[24] Olszewski J, Szpulak M, Urbanczyk W 2005 Opt. Express 13 6015
-
[1] Jeong Y, Sahu J K, Payne D N 2004 Electron. Lett. 40 470
[2] Fini J M 2007 J. Opt. Soc. Am. B 24 1669
[3] Song Y J, Hu M L, Liu Q W, Li J Y, Chen W, Chai L, Wang Q Y 2008 Acta Phys. Sin. 57 5045 (in Chinese) [宋有建, 胡明列, 刘庆文, 李进延, 陈伟, 柴路, 王清月 2008 57 5045]
[4] Yang H R, Li X Y, Hong W, Hao J H 2012 Chin. Phys. B 21 024211
[5] Jin C J, Cheng B Y, Man B Y, Li Z L, Zhang D Z 1999 Appl. Phys. Lett. 75 1848
[6] Wang Y Q, Hu X Y, Xu X S, Cheng B Y, Zhang D Z 2003 Phys. Rev. B 68 165106
[7] Notomi M, Suzuki H, Tamamura T, Edagawa K 2004 Phys. Rev. Lett. 92 123906
[8] Wang K 2006 Phys. Rev. B 73 235122
[9] Rochstuhl C, Lederer F 2006 New J. Phys. 206 233390
[10] Zhang J Y, Tam H L, Wong W H, Pun Y B The 5th Pacific Rim Conference on Lasers and Electro-Optics Taipei China, Dec15–19, 2003 p117
[11] Romero-Vivas J, Chigrin D, Lavrinenko A, Lavrinenko V, Sotomayor Torres M 2005 Opt. Express 13 826
[12] Dyachenko P N, Miklyaev Y V 2006 SPIE. 6182 61822I
[13] Knight J C, Birks T A, Cregan R F, Russell P S J 1998 Electron. Lett. 34 1374
[14] Knight J C, Birks T A, Russell P S J, Atkin D M 1996 Opt. Lett. 21 1547
[15] Fang H, Lou S Q, Guo T Y, Yao L, Li H L, Jian S S 2008 Chin. Phys. B 17 1029
[16] Guo Y Y, Hou L T 2010 Acta Phys. Sin. 59 4041 (in Chinese) [郭艳艳, 侯蓝田 2010 59 4041]
[17] Ghosh S, Dasgupta S, Varshney R K, Richardson D J, Pal B P 2011 Opt. Express 19 21295
[18] Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034201
[19] Fleming J W, Wood D L 1983 Applied Optics 22 3102
[20] Selleri S, Vincetti L, Cucinotta A, Zoboli M 2001 Opt. Quantum Electron 33 359
[21] Xia C M, Zhou G Y, Han Y, Liu Z L, Hou L T 2011 Acta Phys. Sin. 60 094213 (in Chinese) [夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田 2011 60 094213]
[22] Haxha S, Ademgil H 2008 Opt. Commun. 281 278
[23] Mortensen N A 2002 Opt. Express 10 341
[24] Olszewski J, Szpulak M, Urbanczyk W 2005 Opt. Express 13 6015
计量
- 文章访问数: 6859
- PDF下载量: 702
- 被引次数: 0