-
The non-classical light resonance on the cesium D1 (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D1 line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D1 line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D1 line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
-
Keywords:
- nonlinear optics /
- quadrature squeezed light field /
- continuously tunable /
- cesium D1 line
[1] Kimble H J 2008 Nature 453 1023
Google Scholar
[2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301
Google Scholar
Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301
Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[4] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145
Google Scholar
[5] Mayers D 2001 J. ACM 48 351
Google Scholar
[6] Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350
Google Scholar
[7] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411
Google Scholar
[8] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 69 094205
Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205
Google Scholar
[9] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102
Google Scholar
[10] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763
[11] 李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001
Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001
[12] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553
Google Scholar
[13] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701
Google Scholar
[14] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
Google Scholar
[15] Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344
Google Scholar
[16] Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221
Google Scholar
[17] Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820
Google Scholar
[18] Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116
Google Scholar
[19] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
Google Scholar
[20] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777
Google Scholar
[21] Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603
Google Scholar
[22] 张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001
Google Scholar
Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001
Google Scholar
[23] 张岩 2017 博士学位论文 (太原: 山西大学)
Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[24] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 69 234204
Google Scholar
Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204
Google Scholar
[25] Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769
Google Scholar
[26] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[27] Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396
Google Scholar
-
-
[1] Kimble H J 2008 Nature 453 1023
Google Scholar
[2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301
Google Scholar
Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301
Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3
[4] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145
Google Scholar
[5] Mayers D 2001 J. ACM 48 351
Google Scholar
[6] Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350
Google Scholar
[7] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411
Google Scholar
[8] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 69 094205
Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205
Google Scholar
[9] Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102
Google Scholar
[10] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763
[11] 李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001
Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001
[12] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553
Google Scholar
[13] Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701
Google Scholar
[14] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
Google Scholar
[15] Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344
Google Scholar
[16] Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221
Google Scholar
[17] Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820
Google Scholar
[18] Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116
Google Scholar
[19] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
Google Scholar
[20] Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777
Google Scholar
[21] Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603
Google Scholar
[22] 张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001
Google Scholar
Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001
Google Scholar
[23] 张岩 2017 博士学位论文 (太原: 山西大学)
Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[24] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 69 234204
Google Scholar
Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204
Google Scholar
[25] Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769
Google Scholar
[26] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97
[27] Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396
Google Scholar
Catalog
Metrics
- Abstract views: 4299
- PDF Downloads: 68
- Cited By: 0