-
1.5 m光通信波段非经典光场在光纤中有着极低的传输损耗, 因而是基于光纤的实用化连续变量量子信息研究的重要资源. 本文利用周期极化磷酸氧钛晶体构成的半整块结构简并光学参量放大器, 实验获得了连续变量1.5 m光通信波段的明亮压缩态光场. 光学参量放大器的阈值功率为230 mW. 当780 nm抽运光场功率为110 mW, 1.5 m注入信号光场功率为3 mW时, 连续变量1.5 m明亮正交位相压缩态光场的压缩度达4.7 dB. 进而利用时域零拍探测系统测量压缩态, 采用量子层析技术重构了该明亮正交位相压缩态光场的Wigner准概率分布函数.
-
关键词:
- 非线性光学 /
- 明亮压缩态光场 /
- 光学参量放大器 /
- Wigner准概率分布函数
The squeezed light at 1.5 m telecommunication band has been considered as an important resource of continuous variable (CV) practical fiber-based quantum information research because it is the lowest loss in fiber. A bright phase quadrature squeezed light for continuous variable at 1.5 m is demonstrated from a semi-monolithic degenerate optical parametric amplifier (DOPA) based on a periodically poled KTiOPO4 (PPKTP) crystal. The laser source is a continuous wave (CW) single-frequency fiber laser at 1.5 m, which is sent through a ring mode cleaner (MC) as a preliminary spatial and noise filter. And then the main portion of the output from the MC is used for external-enhanced second harmonic generation to obtain a CW single-frequency low noise laser at 780 nm that acts as the pump of the DOPA. The residual light of the output from the MC at 1.5 m is used as the injected signal light of the DOPA and the local oscillator (LO) of a balanced homodyne detector (BHD) system. The DOPA is built by using a type-I PPKTP crystal and a piezo-actuated output coupler and works in double-resonance case with a threshold power of 230 mW. When the DOPA is operating in the state of amplification, the output down-conversion field should be a bright phase quadrature squeezed light, where the relative phase between the pump and the injected signal is locked to 0. A 4.7 dB bright phase quadrature squeezed light is measured by the BHD system with the pump light of 110 mW and the injected signal of 3 mW, where the relative phase between the down-conversion field and the LO is locked to 0. Our measurement is limited by the optical losses and the detection efficiency. We have taken into account the detection efficiency of 86.6%, and the actual squeezing of the squeezed light being 6.3 dB. Moreover, because it is so crucial a process for CV quantum information system that the transmission and evolution of the CV squeezed states in the fiber may reappear in all information of the quantum states in the phase space, then the bright squeezed light is detected by a BHD system in the time domain, and its Wigner quasi-probability distribution function can be reconstructed by using a quantum tomographic technique. Furthermore, the bright squeezed state at 1.5 m is an ideal source for fiber-based long-distance quantum information because of its stability and bright mean field.-
Keywords:
- nonlinear optics /
- bright squeezed light /
- optical parametric amplifier /
- Wigner quasi-probability distribution function
[1] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472
[2] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300
[3] Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278
[4] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[5] Dantan A, Pinard M 2004 Phys. Rev. A 69 043810
[6] Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[7] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]
[8] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903
[9] Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304
[10] Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302
[11] Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[12] Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520
[13] Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465
[14] Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755
[15] Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304
[16] Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469
[17] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
[18] Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329
[19] Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91
[20] Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396
[21] Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 54 3637]
[22] Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102
[23] Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204
[24] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763
[25] Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]
[26] Black E D 2001 Am. J. Phys. 69 79
[27] Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]
[28] Wigner E 1932 Phys. Rev. 40 749
[29] Fano U 1957 Rev. Mod. Phys. 29 74
[30] Vogel K, Risken H 1989 Phys. Rev. A 40 2847
[31] Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933
[32] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402
[33] Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 57 6962]
-
[1] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472
[2] Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1300
[3] Xiao M, Wu LA, Kimble H J 1987 Phys. Rev. Lett. 59 278
[4] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[5] Dantan A, Pinard M 2004 Phys. Rev. A 69 043810
[6] Furusawa A, Serensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[7] Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 54 2710]
[8] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903
[9] Lee H, Ahn D, Hwang S W 2002 Phys. Rev. A 66 024304
[10] Moskal S, Bednarek S, Adamowski J 2007 Phys. Rev. A 76 032302
[11] Schmitt-Manderbach T, Weier H, Furst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kursiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504
[12] Wu L A, Kimble H J, Hall J H, Wu H F 1986 Phys. Rev. Lett. 57 2520
[13] Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B 4 1465
[14] Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755
[15] Breitenbach G, Muler T, Pereira S F, Poizat J P, Schiller S, Mlynek J 1995 J. Opt. Soc. Am. B 12 2304
[16] Lam P K, Ralph T C, Buchler B C, Mcclelland D E, Bachor H A, Gao J 1999 J. Opt. B: Quan. Semiclass Opt. 1 469
[17] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321
[18] Eberle T, Hndchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329
[19] Schiller S, Breitenbach G, Pereira S F, Paschotta R, White A G, Mlynek J 1995 Proc. SPIE 2378 91
[20] Schneider K, Bruchmeier R, HanSen H, Schiller S, Mlynek J 1996 Opt. Lett. 21 1396
[21] Ma H L, Wei D, Ye C G, Zhang J, Peng K C 2005 Acta Phys. Sin. 54 3637 (in Chinese) [马红亮, 卫栋, 叶晨光, 张靖, 彭堃墀 2005 54 3637]
[22] Feng J X, Tian X T, Li Y M, Zhang K S 2008 Appl. Phys. Lett. 92 221102
[23] Liu Q, Feng J X, Li H, Jiao Y C, Zhang K S 2012 Chin. Phys. B 21 104204
[24] Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763
[25] Wu Z Q, Zhou H J, Wang Y J, Zheng Y H 2013 Acta Sin. Quan. Opt. 19 1 (in Chinese) [邬志强, 周海军, 王雅君, 郑耀辉2013 量子光学学报 19 1 ]
[26] Black E D 2001 Am. J. Phys. 69 79
[27] Li H, Feng J X, Wan Z J, Zhang K S 2014 Chin. J. Lasers 41 0502003 (in Chinese) [李宏, 冯晋霞, 万振菊, 张宽收 2014 中国激光 41 0502003]
[28] Wigner E 1932 Phys. Rev. 40 749
[29] Fano U 1957 Rev. Mod. Phys. 29 74
[30] Vogel K, Risken H 1989 Phys. Rev. A 40 2847
[31] Schiller S, Breitenbach G, Pereira S F, Muller T, Mlynek J 1996 Phys. Rev. Lett. 77 2933
[32] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J, Schiller S 2001 Phys. Rev. Lett. 87 050402
[33] Ye C G, Zhang J 2008 Acta Phys. Sin. 57 6962 (in Chinese) [叶晨光, 张靖 2008 57 6962]
计量
- 文章访问数: 7119
- PDF下载量: 181
- 被引次数: 0