-
本文利用原子力显微镜原位研究Mn79.5Fe15.6Cu4.9反铁磁高温形状记忆合金在升降温过程中与马氏体相变相关的表面起伏特征, 同时采用X射线衍射、动态热机械分析等实验检测手段辅助分析其微观组织结构演化, 从纳米尺度分析面心立方–面心四方结构相变及表面浮突产生的物理机理. 实验结果表明: 在升降温过程中观察到帐篷型表面浮突, 由面心立方–面心四方马氏体逆相变产生的, 即母相浮突, 这与通常观测到的马氏体浮突不同; 实验证实面心立方–面心四方马氏体逆相变具有切变特征, 马氏体孪晶的逆向切变是产生帐篷型表面浮突的主要机理; 测得逆孪晶切变的浮突角小于1°, 远小于传统形状记忆合金的表面浮突角值, 这是由于面心立方母相与面心四方马氏体相结构差异较小造成的; 表面浮突随温度变化具有极好的可逆性, 这是马氏体相变晶体学可逆性决定的, 表明该合金具有优良的表面形貌记忆效应.
-
关键词:
- 表面浮突 /
- 原位原子力显微镜 /
- 马氏体逆相变 /
- Mn-Fe-Cu 反铁磁合金
Evolution of surface relief and its intrinsic mechanism associated with martensitic transformation (MT) during heating and cooling in Mn79.5Fe15.6Cu4.9 high-temperature antiferromagnetic shape memory alloy (SMA) have been investigated in nano-scale by means of in-situ atomic force microscopy (AFM), X-ray diffraction (XRD), and dynamic mechanical analyzer (DMA). Experimental results show that the N-type surface relief originates from the reverse MT and is completely made of matrix which is different from the conventional ones. The reverse MT exhibits untwinning shear and the reverse shearing of twinned martensites mainly contribute to the surface relief. The measured surface relief angles are less than 1°, which are determined by the small difference of lattice constants between fcc and fct structures. Surface relief has a good recovery property because of the crystallographic reversibility rule in SMAs, implying that this kind of alloy has a good surface morphology memory effect.-
Keywords:
- surface relief /
- in-situ AFM /
- reverse martensitic transformation /
- Mn-Fe-Cu antiferromagnetic alloy
[1] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 55 2877]
[2] Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M 2010 Nat. Mater. 9 478
[3] Peng W Y, Tan J, Zhang A S, Yan M M 2010 Acta Phys. Sin. 59 8244 (in Chinese) [彭文屹, 覃金, 章爱生, 严明明 2010 59 8244]
[4] Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504
[5] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du YW 2013 Chin. Phys. B 22 077506
[6] Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 60 107501]
[7] Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier HJ 2008 Acta Mater. 56 3791
[8] Omori T, Sutou Y, Oikawa K, Kainuma R, Ishida K 2005 Scripta Mater. 52 565
[9] Zhang J H 2005 Curr Opin Solid State & Mater Sci. 9 326
[10] Zhang J H, Peng W Y, Hsu TY 2008 Appl. Phys. Lett. 93 122510
[11] Peng W Y 2007 Ph. D Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [彭文屹 2007 博士学位论文(上海: 上海交通大学)]
[12] Tsunoda Y, Wakabayashi N 1981 J. Phys. Soc. Jpn. 50 3341
[13] Oguchi T, Freeman AJ 1984 J. Magn. Magn. Mater. 1-2 L1
[14] Xu Zuyao 1999 Martensitic Transformation and Martensite (2rd Ed.) (Beijing: Science Press) p9 (in Chinese) [徐祖耀 1999 马氏体相变与马氏体(第2版) (北京:科学出版社)第9页]
[15] Fang H S 1999 Bainitic Transformaiton (Beijing: Science Press) p254 (in Chinese) [方鸿生 1999 贝氏体相变(北京: 科学出版社) 第254页]
[16] Zhang J H, Rong Y H, Hsu TY 2010 varPhil Magazine. 90 159
[17] Ito K, Tsukishima M, Kobayashi M 1983 JIM 24 487
[18] Wang L T, Ge T S 1988 Acta Metall Sin. A 24 147 (in Chinese) [王力田, 葛庭燧 1988 金属学报 24 147]
[19] Waitz T, Karnthaler H P 1997 Acta Mater. 45 837
[20] Bergeon N, Kajiwara S, Kikuchi T 2000 Acta Mater. 48 4053
[21] Reinhold M, Waston C, Knowlton WB, M€ullner P 2010 J Appl Phys. 107 113501
[22] Liu D Z, Dunne D 2003 Scr Mater. 48 1611
[23] Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K 1995 Phys Rev. B 52 7879
[24] Tian Q C, Yin F X, Sakaguchi T, Nagai K 2006 Acta Mater. 54 1805
[25] Shimizu K, Okumura K, Kubo H 1982 Trans. JIM 23 53
[26] Wang Y, Zhang J H 2007 Acta Mater. 55 5169
[27] Artemev A, Wang Y, Khachaturyan AQ 2000 Acta Mater. 48 2503
[28] Liu D Z, Kajiwara S, Kikuchi T, Shinya N 2003 Philos Mag. 83 2875
-
[1] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 55 2877]
[2] Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M 2010 Nat. Mater. 9 478
[3] Peng W Y, Tan J, Zhang A S, Yan M M 2010 Acta Phys. Sin. 59 8244 (in Chinese) [彭文屹, 覃金, 章爱生, 严明明 2010 59 8244]
[4] Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504
[5] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du YW 2013 Chin. Phys. B 22 077506
[6] Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 60 107501]
[7] Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier HJ 2008 Acta Mater. 56 3791
[8] Omori T, Sutou Y, Oikawa K, Kainuma R, Ishida K 2005 Scripta Mater. 52 565
[9] Zhang J H 2005 Curr Opin Solid State & Mater Sci. 9 326
[10] Zhang J H, Peng W Y, Hsu TY 2008 Appl. Phys. Lett. 93 122510
[11] Peng W Y 2007 Ph. D Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [彭文屹 2007 博士学位论文(上海: 上海交通大学)]
[12] Tsunoda Y, Wakabayashi N 1981 J. Phys. Soc. Jpn. 50 3341
[13] Oguchi T, Freeman AJ 1984 J. Magn. Magn. Mater. 1-2 L1
[14] Xu Zuyao 1999 Martensitic Transformation and Martensite (2rd Ed.) (Beijing: Science Press) p9 (in Chinese) [徐祖耀 1999 马氏体相变与马氏体(第2版) (北京:科学出版社)第9页]
[15] Fang H S 1999 Bainitic Transformaiton (Beijing: Science Press) p254 (in Chinese) [方鸿生 1999 贝氏体相变(北京: 科学出版社) 第254页]
[16] Zhang J H, Rong Y H, Hsu TY 2010 varPhil Magazine. 90 159
[17] Ito K, Tsukishima M, Kobayashi M 1983 JIM 24 487
[18] Wang L T, Ge T S 1988 Acta Metall Sin. A 24 147 (in Chinese) [王力田, 葛庭燧 1988 金属学报 24 147]
[19] Waitz T, Karnthaler H P 1997 Acta Mater. 45 837
[20] Bergeon N, Kajiwara S, Kikuchi T 2000 Acta Mater. 48 4053
[21] Reinhold M, Waston C, Knowlton WB, M€ullner P 2010 J Appl Phys. 107 113501
[22] Liu D Z, Dunne D 2003 Scr Mater. 48 1611
[23] Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K 1995 Phys Rev. B 52 7879
[24] Tian Q C, Yin F X, Sakaguchi T, Nagai K 2006 Acta Mater. 54 1805
[25] Shimizu K, Okumura K, Kubo H 1982 Trans. JIM 23 53
[26] Wang Y, Zhang J H 2007 Acta Mater. 55 5169
[27] Artemev A, Wang Y, Khachaturyan AQ 2000 Acta Mater. 48 2503
[28] Liu D Z, Kajiwara S, Kikuchi T, Shinya N 2003 Philos Mag. 83 2875
计量
- 文章访问数: 6891
- PDF下载量: 508
- 被引次数: 0