搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模拟电路的新型忆感器等效模型

梁燕 于东升 陈昊

引用本文:
Citation:

基于模拟电路的新型忆感器等效模型

梁燕, 于东升, 陈昊

A novel meminductor emulator based on analog circuits

Liang Yan, Yu Dong-Sheng, Chen Hao
PDF
导出引用
  • 本文首先利用光敏电阻阻值的可控性, 建立了磁通控制型忆阻器的等效电路模型. 通过对忆感器和忆阻器间转换关系的分析, 采用模拟电子元器件设计了磁通控制型忆感器的实用等效电路模型, 给出了理论分析并结合Pspice软件进行了仿真验证. 忆感器等效电路模型的韦安关系展现出典型的非线性磁滞回线特性. 最后, 运用实验手段研究了正弦波和三角波两种典型电压信号激励下忆感器与RC串联后电路的动态特征, 证明了本文提出忆感器等效电路模型的有效性.
    Meminductor, a nonlinear device with memory ability and controllable meminductance, was generalized on the basis of the conception of memristor. Currently, meminductor is still unavailable on the market. Therefore, in order to investigate its properties and potential application, designing electronic emulator is of significant importance. In this paper, a flux-controlled memristive emulator using ligh-dependent resistor (LDR) is proposed and the mutator for transferring memristor into a flux controlled meminductor is described, of which the realization is on the basis of two current conveyor chips and operational amplifiers. Results of Pspice simulation and hardware experiments indicate that the current-flux characteristic of the meminductor is a frequency-dependent pinched loop, like an inclined number “8”. To confirm the effectiveness and correctness, the proposed emulator is analyzed theoretically and tested experimentally as it is connected in an RLMC series circuit. The dynamic behaviors of the RLMC circuit are analyzed and observed. All the results manifest that this newly proposed emulator is capable of simulating a nonlinear meminductor and can be applied to the analog circuit design.
    • 基金项目: 中央高校基本科研业务费专项资金 (批准号: 2013QNB28) 资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2013QNB28).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Wang W, Ma D G, 2010 Chin. Phys. Lett. 27 018503

    [5]

    Liu Y, Song Z T, Ling Y, Feng S L 2010 Chin. Phys. Lett. 27 038502

    [6]

    Huang L, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 137701 (in Chinese) [黄力, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 137701]

    [7]

    Bao B C, Hu X, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡许, 许建平, 刘中, 邹凌 2011 60 120502]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 徐建平 2010 59 3785]

    [9]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 217306]

    [10]

    Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [11]

    Rák A, Cserey G 2010 IEEE Trans. Computer-Aided Design of Integr. Circ. Syst. 29 632

    [12]

    Batas D, Fiedler H 2011 IEEE Trans. Nano 10 250

    [13]

    Shin S, Kang S M 2010 IEEE Trans. Computer-Aided Design of Integr. Circ. Syst. 29 590

    [14]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Reg. Papers 59 2422

    [15]

    Pershin Y V, Ventra M D 2010 IEEE Trans. Circ. Syst. I: Reg. Papers 57 1857

    [16]

    Valsa J, Biolek D, Biolek Z 2010 Int. J. Numer. Model 24 400

    [17]

    Wang X Y, Fitch A L, Iu H H C, Qi W G 2012 Chin. Phys. B 21 108501

    [18]

    Biolek D, Biolek Z, Biolkova V 2011 Analog Intergr. Circ. Sig. Process 66 129

    [19]

    Pershin Y V, Ventra M D 2010 Electron. Lett. 46 517

    [20]

    Senani R 1982 Electrocomponent Sci. Techn. 10 7

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Wang W, Ma D G, 2010 Chin. Phys. Lett. 27 018503

    [5]

    Liu Y, Song Z T, Ling Y, Feng S L 2010 Chin. Phys. Lett. 27 038502

    [6]

    Huang L, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 137701 (in Chinese) [黄力, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 137701]

    [7]

    Bao B C, Hu X, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡许, 许建平, 刘中, 邹凌 2011 60 120502]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 徐建平 2010 59 3785]

    [9]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 61 217306]

    [10]

    Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [11]

    Rák A, Cserey G 2010 IEEE Trans. Computer-Aided Design of Integr. Circ. Syst. 29 632

    [12]

    Batas D, Fiedler H 2011 IEEE Trans. Nano 10 250

    [13]

    Shin S, Kang S M 2010 IEEE Trans. Computer-Aided Design of Integr. Circ. Syst. 29 590

    [14]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Reg. Papers 59 2422

    [15]

    Pershin Y V, Ventra M D 2010 IEEE Trans. Circ. Syst. I: Reg. Papers 57 1857

    [16]

    Valsa J, Biolek D, Biolek Z 2010 Int. J. Numer. Model 24 400

    [17]

    Wang X Y, Fitch A L, Iu H H C, Qi W G 2012 Chin. Phys. B 21 108501

    [18]

    Biolek D, Biolek Z, Biolkova V 2011 Analog Intergr. Circ. Sig. Process 66 129

    [19]

    Pershin Y V, Ventra M D 2010 Electron. Lett. 46 517

    [20]

    Senani R 1982 Electrocomponent Sci. Techn. 10 7

  • [1] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器.  , 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略.  , 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展.  , 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型.  , 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [5] 朱雷杰, 王发强. 基于Knowm忆阻器的新型忆感器模型的设计与分析.  , 2019, 68(19): 198501. doi: 10.7498/aps.68.20190793
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析.  , 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [8] 许碧荣, 王光义. 忆感器文氏电桥振荡器.  , 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [9] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理.  , 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [10] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器.  , 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [11] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性.  , 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [12] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析.  , 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [13] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响.  , 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [14] 袁方, 王光义, 靳培培. 一种忆感器模型及其振荡器的动力学特性研究.  , 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [15] 王颜, 杨玖, 王丽丹, 段书凯. 基于串并联磁控忆阻器的耦合行为研究.  , 2015, 64(23): 237303. doi: 10.7498/aps.64.237303
    [16] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展.  , 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响.  , 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [18] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响.  , 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 周铁戈, 宋凤斌, 左 涛, 顾 静, 夏侯海, 胡雅婷, 赵新杰, 方 兰, 阎少林. 本征约瑟夫森结阵列的PSpice模型及混沌行为研究.  , 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
计量
  • 文章访问数:  7693
  • PDF下载量:  1026
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-06
  • 修回日期:  2013-04-11
  • 刊出日期:  2013-08-05

/

返回文章
返回
Baidu
map