搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量

周斌 于全芝 张宏斌 张雪荧 鞠永芹 陈亮 阮锡超

引用本文:
Citation:

80.5 MeV/u碳离子诱发铜靶的放射性剩余产物测量

周斌, 于全芝, 张宏斌, 张雪荧, 鞠永芹, 陈亮, 阮锡超

Measurement of radioactive residual nuclides induced in Cu target by 80.5 MeV/u carbon ions

Zhou Bin, Yu Quan-Zhi, Zhang Hong-Bin, Zhang Xue-Ying, Ju Yong-Qin, Chen Liang, Ruan Xi-Chao
PDF
HTML
导出引用
  • 高能重带电粒子能直接穿透靶原子核外电子层, 与原子核发生直接碰撞, 发生散裂反应, 产生一系列具有放射性的剩余产物核. 重带电粒子诱发靶材放射性剩余核与辐射防护和人员安全有着密切联系, 当前, 大部分剩余核产额主要依靠蒙特卡罗粒子输运程序进行模拟计算, 其准确程度亟需通过实验测量进行准确评估. 本文利用能量为80.5 MeV/u的12C6+ 粒子对薄铜靶开展了辐照实验与伽玛射线测量, 结合伽玛谱学分析方法, 得出了辐照产生的18种放射性剩余产物的初始活度和产生截面值, 并与PHITS模拟结果进行对比. 结果表明, PHITS模拟程序对放射性剩余核种类的估计具有较高可靠性, 在其绝对产额方面, 与实验测量仍具有较大偏差.
    Radioactive residual nuclides, which are usually closely related to radiation protection and personnel safety, will be generated when target materials are irradiated by high energy particles. Based on different nuclear reaction models, Monte Carlo code is a usual method to obtain residual nuclide production. The simulation accuracy needs to be evaluated by experimental data. In this paper, an irradiation experiment of thin copper target irradiated by 12C6+ particles with energy of 80.5 MeV/u is carried out. The radioactivities and cross-sections of 18 radioactive residual nuclides are obtained by gamma spectrometry analysis. Compared with the Monte Carlo simulation by PHITS, the results show that the spallation model of PHITS has a high reliability in estimating the types of radioactive residual nuclei, and it could be optimized in the aspect of the absolute yield.
      通信作者: 于全芝, qzhyu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11575289)与中国科学院关键技术人才项目资助的课题
      Corresponding author: Yu Quan-Zhi, qzhyu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575289) and CAS Key Technology Talent Program
    [1]

    Xia J W, Zhan W L, Wei B W, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 488 11Google Scholar

    [2]

    Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instumr. Methods Phys. Res., A 600 10Google Scholar

    [3]

    朱升云, 郭刚, 何明, 吴振东, 袁大庆, 隋丽, 焦学胜, 常宏伟, 左义, 范平, 葛智刚, 陈东风 2020 原子能科学技术 54 1Google Scholar

    Zhu S Y, Guo G, He M, Wu Z D, Ruan D Q, Sui L, Jiao X S, Chang H W, Zuo Y, Fan P, Ge Z G, Chen D F 2020 Atom. Ener. Sci. Technol. 54 1Google Scholar

    [4]

    刘世耀 2012 质子和重离子治疗及其装置 (北京: 科学出版社) 第152页

    Liu S Y 2012 Proton and Heavy Ions Therapy and Facility (Beijing: Science Press) p152 (in Chinses)

    [5]

    Villagrasa-Cabton C, Boudard A, Ducret J E, et al. 2007 Phys. Rev. C 75 044603Google Scholar

    [6]

    林源根, 詹文龙, 郭忠言, 等 1998 47 564Google Scholar

    Lin Y G, Zhan W L, Guo Z Y, et al. 1998 Acta Phys. Sin. 47 564Google Scholar

    [7]

    Roger E B, Daniel R M, Glenn T S 1951 Phys. Rev. 84 671Google Scholar

    [8]

    Cumming J B, Haustein P E, Stoenner R W 1974 Phys. Rev. C 10 739Google Scholar

    [9]

    Cumming J B, Stoenner R W 1976 Phys. Rev. C 14 1554Google Scholar

    [10]

    Cumming J B, Haustein P E, Ruth T J, Virtes G J 1978 Phys. Rev. C 17 1632Google Scholar

    [11]

    Porile N T, Cole G D, Rudy C R 1979 Phys. Rev. C 19 2288Google Scholar

    [12]

    Hicks K H, Ward T E, Bowman H, et al. 1982 Phys. Rev. C 26 2016Google Scholar

    [13]

    Whitfield J P, Porile N T, 1993 Phys. Rev. C 47 1636Google Scholar

    [14]

    Michel R, Gloris M, Lange H J, et al. 1995 Nucl. Instrum. Methods Phys. Res., Sect. B 103 183Google Scholar

    [15]

    Michel R, Bodemann R, Busemann H, et al. 1997 Nucl. Instrum. Methods Phys. Res., Sect. B 129 153Google Scholar

    [16]

    Titarenko Y E, Shvedov O V, Igumnov M M, et al. 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 414 73Google Scholar

    [17]

    Titarenko Y E, Shvedov O V, Batyaev V F, et al. 2002 Phys.Rev.C 65 064610Google Scholar

    [18]

    Yashima H, Uwamino Y, Sugita H, et al. 2002 Phys.Rev.C 66 044607Google Scholar

    [19]

    Yashima H, Uwamino Y, Iwase H, et al. 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 226 243Google Scholar

    [20]

    Shams A M, Uosif M A, Michel R, et al. 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 298 19Google Scholar

    [21]

    Ogawa T, Morev M N, Sato T, Hashimoto S ???? Nucl. Instrum. Methods Phys. Res., Sect. B 300 35

    [22]

    Ge H L, Ma F, Zhang X Y, et al. 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 337 34Google Scholar

    [23]

    Zhang H B, Zhang X Y, Ma F, et al. 2015 Chin. Phys. Lett. 32 042501Google Scholar

    [24]

    Tatsuhiko S, Koji N, Norihiro M, et al. 2013 J Nucl. Sci. Technol. 50 913Google Scholar

  • 图 1  铜靶冷却后的伽玛能谱

    Fig. 1.  Gamma spectra of the copper target.

    图 2  放射性剩余核分析流程图

    Fig. 2.  Diagram to analyze radioactive residual nuclei.

    表 1  长半衰期放射性剩余核的测量活度值

    Table 1.  Radioactivity of long-life residual nuclides

    剩余核名称半衰期/dT = 11.8 d/BqT = 6.8 d/Bq推导值/BqT = 3.8 d/Bq推导值/Bq
    51Cr27.71526.21695.11729.61831.91864.5
    48V15.971107.91351.01376.41512.91567.8
    52Mn5.59934.91690.11737.92437.42521.0
    58Co70.82876.1893.5920.0949.7947.5
    56Co77.27239.1233.5250.1233.6256.9
    44 mSc2.44228.9907.4536.42105.52218.0
    57Co271.79211.3209.4214.0216.5215.7
    46Sc83.79169.7179.9176.9174.9181.3
    47Sc3.345155.2433.7437.4799.6814.4
    54Mn312.3140.7139.8142.3139.2143.2
    59Fe44.558.155.660.965.165.8
    下载: 导出CSV

    表 2  剩余核实验测量与模拟活度值(冷却时间3.8 d)

    Table 2.  Radioactivity of residual nuclides in copper target by measurement and PHITS simulation (cooling for 3.8 d).

    剩余核
    名称
    半衰期模拟活
    度值/Bq
    实测活
    度值/Bq
    Exp./Cal.
    47Sc3.345d2832.3799.6 ± 29.90.28
    51Cr27.7d1953.01831.9 ± 68.50.94
    44Sc2.927h1920.04507.8 ± 288.62.47
    48V15.97d1642.21512.9 ± 110.10.86
    44mSc58.6h1813.32105.5 ± 78.81.22
    48Sc43.67h1416.6152.0 ± 13.20.11
    52Mn5.59d1106.32437.4 ± 111.72.20
    58Co70.82d915.5949.7 ± 43.51.04
    7Be53.29d776.7186.3 ± 12.90.24
    43K22.3h598.6143.3 ± 5.40.24
    32P14.26d490.4纯β衰变
    57Ni35.6h486.5203.2 ± 13.50.42
    46Sc83.79d408.7174.9 ± 9.60.43
    33P14.26d327.8纯β衰变
    47Ca4.536d233.2特征峰微弱
    57Co271.79d214.4216.5 ± 8.11.01
    56Co77.27d213.3233.6 ± 15.51.09
    37Ar35.04d208.6纯β衰变
    54Mn312.3d199.6139.2 ± 6.40.70
    42K12.36h176.3特征峰微弱
    49V330d163.5纯β衰变
    3H12.33a130.3纯β衰变
    55Co17.53h116.4133.1 ± 13.81.14
    59Fe44.5d109.461.8 ± 5.80.56
    48Cr21.56h93.547.5 ± 1.80.51
    下载: 导出CSV

    表 3  铜靶放射性剩余产物的反应截面

    Table 3.  Cross sections of residual nuclides in copper target by measurement and PHITS simulation.

    剩余核名称测量截面值/mb模拟截面值/mb
    7Be9.11 ± 0.9838.0
    43K2.05 ± 0.198.6
    44 mSc13.37 ± 1.2110.9
    46Sc13.21 ± 1.3130.9
    47Sc5.10 ± 0.4618.1
    48Sc1.04 ± 0.139.7
    48V24.93 ± 2.7528.5
    48Cr0.72 ± 0.071.4
    51Cr48.78 ± 4.4148.0
    52Mn19.16 ± 1.818.7
    54Mn38.28 ± 3.6138.3
    55Co3.26 ± 0.432.9
    56Co16.31 ± 1.7214.9
    57Co51.88 ± 4.6951.4
    58Co60.97 ± 5.7658.8
    57Ni1.59 ± 0.173.8
    59Fe2.55 ± 0.324.5
    下载: 导出CSV
    Baidu
  • [1]

    Xia J W, Zhan W L, Wei B W, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 488 11Google Scholar

    [2]

    Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instumr. Methods Phys. Res., A 600 10Google Scholar

    [3]

    朱升云, 郭刚, 何明, 吴振东, 袁大庆, 隋丽, 焦学胜, 常宏伟, 左义, 范平, 葛智刚, 陈东风 2020 原子能科学技术 54 1Google Scholar

    Zhu S Y, Guo G, He M, Wu Z D, Ruan D Q, Sui L, Jiao X S, Chang H W, Zuo Y, Fan P, Ge Z G, Chen D F 2020 Atom. Ener. Sci. Technol. 54 1Google Scholar

    [4]

    刘世耀 2012 质子和重离子治疗及其装置 (北京: 科学出版社) 第152页

    Liu S Y 2012 Proton and Heavy Ions Therapy and Facility (Beijing: Science Press) p152 (in Chinses)

    [5]

    Villagrasa-Cabton C, Boudard A, Ducret J E, et al. 2007 Phys. Rev. C 75 044603Google Scholar

    [6]

    林源根, 詹文龙, 郭忠言, 等 1998 47 564Google Scholar

    Lin Y G, Zhan W L, Guo Z Y, et al. 1998 Acta Phys. Sin. 47 564Google Scholar

    [7]

    Roger E B, Daniel R M, Glenn T S 1951 Phys. Rev. 84 671Google Scholar

    [8]

    Cumming J B, Haustein P E, Stoenner R W 1974 Phys. Rev. C 10 739Google Scholar

    [9]

    Cumming J B, Stoenner R W 1976 Phys. Rev. C 14 1554Google Scholar

    [10]

    Cumming J B, Haustein P E, Ruth T J, Virtes G J 1978 Phys. Rev. C 17 1632Google Scholar

    [11]

    Porile N T, Cole G D, Rudy C R 1979 Phys. Rev. C 19 2288Google Scholar

    [12]

    Hicks K H, Ward T E, Bowman H, et al. 1982 Phys. Rev. C 26 2016Google Scholar

    [13]

    Whitfield J P, Porile N T, 1993 Phys. Rev. C 47 1636Google Scholar

    [14]

    Michel R, Gloris M, Lange H J, et al. 1995 Nucl. Instrum. Methods Phys. Res., Sect. B 103 183Google Scholar

    [15]

    Michel R, Bodemann R, Busemann H, et al. 1997 Nucl. Instrum. Methods Phys. Res., Sect. B 129 153Google Scholar

    [16]

    Titarenko Y E, Shvedov O V, Igumnov M M, et al. 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 414 73Google Scholar

    [17]

    Titarenko Y E, Shvedov O V, Batyaev V F, et al. 2002 Phys.Rev.C 65 064610Google Scholar

    [18]

    Yashima H, Uwamino Y, Sugita H, et al. 2002 Phys.Rev.C 66 044607Google Scholar

    [19]

    Yashima H, Uwamino Y, Iwase H, et al. 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 226 243Google Scholar

    [20]

    Shams A M, Uosif M A, Michel R, et al. 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 298 19Google Scholar

    [21]

    Ogawa T, Morev M N, Sato T, Hashimoto S ???? Nucl. Instrum. Methods Phys. Res., Sect. B 300 35

    [22]

    Ge H L, Ma F, Zhang X Y, et al. 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 337 34Google Scholar

    [23]

    Zhang H B, Zhang X Y, Ma F, et al. 2015 Chin. Phys. Lett. 32 042501Google Scholar

    [24]

    Tatsuhiko S, Koji N, Norihiro M, et al. 2013 J Nucl. Sci. Technol. 50 913Google Scholar

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟.  , 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤.  , 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究.  , 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [4] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术.  , 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [5] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟.  , 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [6] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析.  , 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [8] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究.  , 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [9] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [11] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [12] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究.  , 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [13] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [14] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [15] 雷晓蔚, 郑 波, 应和平. 二维自旋系统aging现象的数值模拟研究.  , 2007, 56(3): 1713-1718. doi: 10.7498/aps.56.1713
    [16] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [17] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟.  , 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [18] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用.  , 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性.  , 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6242
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2021-01-06
  • 上网日期:  2021-03-24
  • 刊出日期:  2021-04-05

/

返回文章
返回
Baidu
map