-
The interaction of highly charged ions with solid surfaces is a very complex multi-body process. When the ions are close to the solid surfaces, the potential energy of the ions will be deposited in a tiny area of the target surfaces in a short time and then emitting X rays, which has important scientific significance and application in Astrophysics and plasma diagnosis. For experiments on the interaction of highly charged ions with surfaces, not only the X-ray energy spectrum but also the X-ray yield should be measured accurately. The precise measurement of the X-ray yield depends on the ability to accurately measure the beam-current intensity. In the past, the beam-current intensity was acquired by measuring the target current. Since the interaction between highly charged ions and solids involves the emission of secondary electrons, the actual measured target current is the sum of the initial beam-current intensity and the intensity caused by the secondary electrons, resulting in inaccurate X-ray yield calculations. In this experiment, a new analytical device, beam-current density meter, has been designed, which can measure the beam-current intensity with an accuracy of 0.1 nA. By measuring the current on the density meter instead of the target current, the influence of secondary electrons is almost avoided, and a more accurate X-ray yield is obtained. This paper reports the characteristic X-ray spectra of oxygen atoms emitted from the interaction of 1.5–20 keV/q highly charged ${\rm{O}} ^{q+} $ ions with aluminum surfaces. For the X rays emitted by$ {\rm{O}}^{q+} $ (q = 3, 5, 6) ions, the experimental results show that it is due to the close collisions with aluminum atoms after entering the surfaces, while the X rays emitted by${\rm{O}} ^{7+} $ ions mainly come from the decay of hollow atoms. Under the condition of equal kinetic energy, the X-ray yield of${\rm{O}} ^{7+} $ ions with K-shell vacancy is about one order of magnitude higher than that of$ {\rm{O}}^{q+} $ (q = 3, 5, 6) ions, and X-ray yield of$ {\rm{O}}^{6+} $ ions without K-shell vacancy is also significantly higher than that of${\rm{O}} ^{3+} $ and$ {\rm{O}}^{5+} $ ions. Generally, the X-ray yield and ionization cross-section is associated with the initial electron configuration of incident ions, and increases with the growth of ions kinetic energy. Based on the semi-classical approximation theory of binary collision, we have estimated the kinetic energy threshold for the emission of the Kα-X rays of$ {\rm{O}}^{q+} $ (q = 3, 5, 6) ions as interacting with the aluminum target. As the incident kinetic energy is lower than the kinetic energy threshold, for${\rm{O}} ^{6+} $ ions interacting with the sample, there may have a multi-electron excitation process that induces this K-electron ionization of the incident ions.-
Keywords:
- highly charged ion /
- X-rays /
- hollow atoms /
- kinetic energy threshold
[1] Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar
[2] Hagstrum H D, Becker G E 1973 Phys. Rev. B 8 107Google Scholar
[3] Donets E D 1983 Phys. Scr. T3 11Google Scholar
[4] Donets E D 1985 Nucl. Instrum. Methods Phys. Res. 9 522Google Scholar
[5] Briand J P, Billy L D, Charles P, Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 159Google Scholar
[6] Winter H, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar
[7] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[8] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23Google Scholar
[9] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 70 023201Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar
[10] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 69 213301Google Scholar
Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar
[11] Schuch R, Schneider D, Knapp D A, Dewitt D, Mcdonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar
[12] Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, Mcdonald J W, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903Google Scholar
[13] Zhang H, Chen X, Yang Z, Xu J, Cui Y, Shao J, Zhang X, Zhao Y, Zhang Y, Xiao G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1564Google Scholar
[14] 张红强 2009 博士学位论文 (兰州: 兰州大学)
Zhang H Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[15] 任惠娟, 张小安, 肖国青 2009 原子核物理评论 26 146Google Scholar
Ren H J, Zhang X A, Xiao G Q 2009 Nucl. Phys. Rev. 26 146Google Scholar
[16] 张小安, 肖国青, 杨治虎, 陈熙萌, 赵永涛, 李福利, 张艳萍, 崔莹, 张红强, 徐徐, 邵剑雄, 詹文龙 2006 中国科学 G刊 36 132
Zhang X A, Xiao G Q, Yang Z H, Chen X M, Zhao Y T, Li F L, Zhang Y P, Cui Y, Zhang H Q, Xu X, Shao J X, Zhan W L 2006 Sci. China, Ser. G 36 132
[17] 杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵剑雄, 杜娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803Google Scholar
Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhu K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803Google Scholar
[18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔莹, 张红强, 徐徐, 邵健雄, 于得洋, 蔡晓红 2006 55 2221Google Scholar
Yang Z H, Song Z Y, Chen X M, Zhang X A, Zhang Y P, Zhao Y T, Cui Y, Zhang H Q, Xu X, Shao J X, Yu D Y, Cai X H 2006 Acta Phys. Sin. 55 2221Google Scholar
[19] Garcia J D 1970 Phys. Rev. A 1 280Google Scholar
[20] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar
[21] 李鹏飞 2017 硕士学位论文 (兰州: 兰州大学)
Li P F 2017 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)
[22] Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R 1997 Surf. Sci. Rep. 27 113Google Scholar
[23] Magno C, Milazzo M, Pizzi C, Porro F, Rota A, Riccobono G 1979 Nuovo Cimento A 54 277Google Scholar
[24] Gryziński M 1965 Phys. Rev. 138 A336Google Scholar
[25] Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, X-Ray Data Booklet [EB/OL] http://xdb.lbl.gov/[2021-4-14]
[26] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青 2012 61 113401Google Scholar
Zhang X A, Li Y Z, Zhao Y T, Liang C H, Cheng R, Zhou X M, Wang X, Lei Y, Sun Y B, Xu G, Li J Y, Xiao G Q 2012 Acta Phys. Sin. 61 113401Google Scholar
[27] 梁昌慧, 张小安, 李耀宗 2013 原子核物理评论 30 63Google Scholar
Liang C H, Zhang X A, Li Y Z 2013 Nucl. Phys. Rev. 30 63Google Scholar
[28] Song Z Y, Yang Z H, Xiao G Q, Xu Q M, Yang Z R 2011 Eur. Phys. J. D 64 197Google Scholar
[29] Hubbell J H, Trehan P N, Singh N, Chand B, Mehta D, Garg M L, Garg R R, Singh S, Puri S 1994 J. Phys. Chem. Ref. Data 23 339Google Scholar
-
图 1 高电荷态离子与表面相互作用实验装置示意图. 实验所需束流经偏转分析磁铁引出, 通过束流轮廓系统、束流密度计、电透镜、光栏后, 最终进入超高真空靶室
Figure 1. Experimental diagram for interaction between highly charged ions and surfaces. The beam required for the experiment is led out by the deflection analysis magnet, passes through the beam profile system, the beam-current density meter, the electric lens, and the jaw slit, finally enters the ultra-high vacuum target chamber.
图 2 不同能量的
${\rm{O}}^{q+}$ (q = 3, 5, 6)离子入射Al表面产生的X射线谱 (a) 5—20 keV/q的${\rm{O}}^{3+}$ 离子; (b) 5—20 keV/q的${\rm{O}}^{5+}$ 离子; (c) 1.5—20 keV/q的${\rm{O}}^{6+}$ 离子. 箭头位置分别标示了C, O, Al的K壳X射线峰的标准值Figure 2. X-ray spectra induced by
${\rm{O}}^{q+}$ (q = 3, 5, 6) ions impact on aluminum surfaces with varied energy: (a)${\rm{O}}^{3+}$ ions with incident energy of 5–20 keV/q; (b)${\rm{O}}^{5+}$ ions with incident energy of 5–20 keV/q; (c)${\rm{O}}^{6+}$ ions with incident energy of 1.5–20 keV/q. The arrow indicates the standard K-shell X-ray peak position of carbon, oxygen and aluminum, respectively.图 3 1.5—20 keV/q的
${\rm{O}}^{7+}$ 离子入射Al表面产生的X射线谱. 箭头位置分别标示了C, O, Al的K壳X射线峰的标准值Figure 3. X-ray spectra generated by
${\rm{O}}^{7+}$ ions impact on aluminum surfaces with the energy ranging from 1.5–20 keV/q. The arrow indicates the Standard K-shell X-ray peak position of carbon, oxygen and aluminum, respectively. -
[1] Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar
[2] Hagstrum H D, Becker G E 1973 Phys. Rev. B 8 107Google Scholar
[3] Donets E D 1983 Phys. Scr. T3 11Google Scholar
[4] Donets E D 1985 Nucl. Instrum. Methods Phys. Res. 9 522Google Scholar
[5] Briand J P, Billy L D, Charles P, Essabaa S, Briand P, Geller R, Desclaux J P, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 159Google Scholar
[6] Winter H, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar
[7] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[8] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Prog. Surf. Sci. 61 23Google Scholar
[9] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青 2021 70 023201Google Scholar
Zhou X M, Wei J, Cheng R, Zhao Y T, Zeng L X, Mei C X, Liang C H, Li Y Z, Zhang X A, Xiao G Q 2021 Acta Phys. Sin. 70 023201Google Scholar
[10] 张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 69 213301Google Scholar
Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar
[11] Schuch R, Schneider D, Knapp D A, Dewitt D, Mcdonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar
[12] Machicoane G A, Schenkel T, Niedermayr T R, Newmann M W, Hamza A V, Barnes A V, Mcdonald J W, Tanis J A, Schneider D H 2002 Phys. Rev. A 65 042903Google Scholar
[13] Zhang H, Chen X, Yang Z, Xu J, Cui Y, Shao J, Zhang X, Zhao Y, Zhang Y, Xiao G 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1564Google Scholar
[14] 张红强 2009 博士学位论文 (兰州: 兰州大学)
Zhang H Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[15] 任惠娟, 张小安, 肖国青 2009 原子核物理评论 26 146Google Scholar
Ren H J, Zhang X A, Xiao G Q 2009 Nucl. Phys. Rev. 26 146Google Scholar
[16] 张小安, 肖国青, 杨治虎, 陈熙萌, 赵永涛, 李福利, 张艳萍, 崔莹, 张红强, 徐徐, 邵剑雄, 詹文龙 2006 中国科学 G刊 36 132
Zhang X A, Xiao G Q, Yang Z H, Chen X M, Zhao Y T, Li F L, Zhang Y P, Cui Y, Zhang H Q, Xu X, Shao J X, Zhan W L 2006 Sci. China, Ser. G 36 132
[17] 杨治虎, 宋张勇, 崔莹, 张红强, 阮芳芳, 邵剑雄, 杜娟, 刘玉文, 朱可欣, 张小安, 邵曹杰, 卢荣春, 于得洋, 陈熙萌, 蔡晓红 2008 57 803Google Scholar
Yang Z H, Song Z Y, Cui Y, Zhang H Q, Ruan F F, Shao J X, Du J, Liu Y W, Zhu K X, Zhang X A, Shao C J, Lu R C, Yu D Y, Chen X M, Cai X H 2008 Acta Phys. Sin. 57 803Google Scholar
[18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔莹, 张红强, 徐徐, 邵健雄, 于得洋, 蔡晓红 2006 55 2221Google Scholar
Yang Z H, Song Z Y, Chen X M, Zhang X A, Zhang Y P, Zhao Y T, Cui Y, Zhang H Q, Xu X, Shao J X, Yu D Y, Cai X H 2006 Acta Phys. Sin. 55 2221Google Scholar
[19] Garcia J D 1970 Phys. Rev. A 1 280Google Scholar
[20] Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar
[21] 李鹏飞 2017 硕士学位论文 (兰州: 兰州大学)
Li P F 2017 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese)
[22] Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S, Schuch R 1997 Surf. Sci. Rep. 27 113Google Scholar
[23] Magno C, Milazzo M, Pizzi C, Porro F, Rota A, Riccobono G 1979 Nuovo Cimento A 54 277Google Scholar
[24] Gryziński M 1965 Phys. Rev. 138 A336Google Scholar
[25] Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, X-Ray Data Booklet [EB/OL] http://xdb.lbl.gov/[2021-4-14]
[26] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青 2012 61 113401Google Scholar
Zhang X A, Li Y Z, Zhao Y T, Liang C H, Cheng R, Zhou X M, Wang X, Lei Y, Sun Y B, Xu G, Li J Y, Xiao G Q 2012 Acta Phys. Sin. 61 113401Google Scholar
[27] 梁昌慧, 张小安, 李耀宗 2013 原子核物理评论 30 63Google Scholar
Liang C H, Zhang X A, Li Y Z 2013 Nucl. Phys. Rev. 30 63Google Scholar
[28] Song Z Y, Yang Z H, Xiao G Q, Xu Q M, Yang Z R 2011 Eur. Phys. J. D 64 197Google Scholar
[29] Hubbell J H, Trehan P N, Singh N, Chand B, Mehta D, Garg M L, Garg R R, Singh S, Puri S 1994 J. Phys. Chem. Ref. Data 23 339Google Scholar
Catalog
Metrics
- Abstract views: 4205
- PDF Downloads: 74
- Cited By: 0