搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石/碳纳米管异质界面热导及声子热输运特性

刘子怡 褚福强 魏俊俊 冯妍卉

引用本文:
Citation:

金刚石/碳纳米管异质界面热导及声子热输运特性

刘子怡, 褚福强, 魏俊俊, 冯妍卉

Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface

Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui
PDF
HTML
导出引用
  • 碳纳米管作为新一代热界面材料, 在天然材料中具有最高的热导率, 有望解决金刚石半导体超高热流密度的散热问题. 因此, 本文提出将金刚石和碳纳米管结合, 可大幅度提高器件性能及稳定性, 减小封装尺寸, 实现器件小型化设计. 采用非平衡分子动力学方法从微观层面探究了金刚石/碳纳米管异质结构界面热特性及影响因素. 研究发现碳纳米管层数增加使声子态密度峰值增大并向低频波段移动, 低频声子增多更有利于界面传热, 同时声子重叠能提高, 声子耦合振动增强提升了界面传热效率; 同时, 一定范围内体系温度的升高及碳纳米管长径比的增大可以提高近界面处金刚石和碳纳米管的态密度截止频率, 提升低频波段的峰值, 进一步增强两侧声子的耦合振动, 提高了界面热导. 最后, 采用正交试验模拟获得了金刚石/碳纳米管界面热导的最优值, 结果远优于目前一般半导体/金属的界面热导. 该工作为优化金刚石/碳纳米管异质界面的热输运提供了思路, 并将有利于器件热管理和芯片材料设计.
    Diamond, an ultra-wide band gap semiconductor material, is an ideal material for high-power, high-frequency, high-temperature, and low-power loss electronic devices. However, high-frequency and high-power working environment leads to ultra-high local hot spots. Thermal interface material (TIM) is urgently needed to improve interface heat dissipation. Carbon nanotube (CNT), a brand-new generation of TIM, has ultra-high thermal conductivity (6000 W/(m·K)) and is expected to solve the heat dissipation problem of diamond semiconductor.Based on this, we first propose to combine diamond and CNT to improve the performance and stability of semiconductor device, reduce packaging size, and achieve miniaturized design of devices. Here we use reverse non-equilibrium molecular dynamics (RNEMD) method to study the thermal transport characteristics and interface thermal conductance (ITC) at the diamond/CNT interface. The results reveal that increasing CNT layers enhances the overall vibration density of states (VDOS) of CNT and shifts the peak value towards the low frequency band, which is more conducive to interface heat transfer. Alternatively, the enhancement of the phonon overlap energy strengthens the coupling vibration of phonon and thus improving the efficiency of the interfacial heat transfer. Moreover, in a certain range, the increase of system temperature and CNT length-to-diameter ratio can raise the cutoff frequency of the VDOS of diamond and CNT near the interface and the peak value of the low frequency band. This further improves the coupling vibration of phonon on both sides. Finally, by orthogonal test simulation, the optimal value of ITC is determined to be 2.65 GW/(m2·K) when the temperature, chirality, layers and length are 900 K, (6, 6), 6 layers and 5 nm respectively. This result greatly exceeds the current ITC of general semiconductors/metal. Compared with general composite materials, diamond/CNT composite material has great potential to enhance heat dissipation. Furthermore, according to P-value test, the number of layers has an extremely significant influence on interfacial thermal transport, while the influence of length, temperature and diameter decrease in turn.This work provides insights into optimizing heat transport at diamond/carbon nanotube interface and will be beneficial for device thermal management and chip material design.
      通信作者: 褚福强, chufq@ustb.edu.cn ; 冯妍卉, yhfeng@me.ustb.edu.cn
      Corresponding author: Chu Fu-Qiang, chufq@ustb.edu.cn ; Feng Yan-Hui, yhfeng@me.ustb.edu.cn
    [1]

    王权杰, 邓宇戈, 王仁宗, 刘向军 2023 72 226301Google Scholar

    Wang Q J, Deng Y G, Wang R Z, Liu X J 2023 Acta Phys. Sin. 72 226301Google Scholar

    [2]

    Hiraiwa A, Kawarada H 2015 J. Appl. Phys. 117 124503Google Scholar

    [3]

    Berman R, Hudson P, Martinez M 1975 J. Phys. C: Solid State Phys. 8 L430Google Scholar

    [4]

    Pernot J, Volpe P N, Omnès F, Muret P, Mortet V, Haenen K, Teraji T 2010 Phys. Rev. B 81 205203Google Scholar

    [5]

    Chow T P, Omura I, Higashiwaki M, Kawarada H, Pala V 2017 IEEE Trans. Electron Devices 64 856Google Scholar

    [6]

    Perez G, Maréchal A, Chicot G, Lefranc P, Jeannin P O, Eon D, Rouger N 2020 Diamond Relat. Mater. 110 108154Google Scholar

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 6291745Google Scholar

    [8]

    Sato H, Kasu M 2013 Diamond Relat. Mater. 31 47Google Scholar

    [9]

    Yang Y, Koeck F A, Dutta M, Wang X, Chowdhury S, Nemanich R J 2017 J. Appl. Phys. 122 155304Google Scholar

    [10]

    Hodgson M, Lohstroh A, Sellin P, Thomas D 2017 Meas. Sci. Technol. 28 105501Google Scholar

    [11]

    Bodie C S, Lioliou G, Lefeuvre G, Barnett A M 2022 Appl. Radiat. Isot. 180 110027Google Scholar

    [12]

    Chaudhuri S K, Kleppinger J W, Karadavut O, Mandal K C 2021 IEEE Electron Device Lett. 42 200Google Scholar

    [13]

    Yang Z, Zhou L H, Luo W, Wan J Y, Dai J Q, Han X G, Fu K, Henderson D, Yang B, Hu L B 2016 Nanoscale 8 19326Google Scholar

    [14]

    Due J, Robinson A J 2013 Appl. Therm. Eng. 50 455Google Scholar

    [15]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 R2514Google Scholar

    [16]

    Marconnet A M, Panzer M A, Goodson K E 2013 Rev. Mod. Phys. 85 1295Google Scholar

    [17]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 Int. J. Heat Mass Transfer 67 1024Google Scholar

    [18]

    常国, 段佳良, 王鲁华, 王西涛, 张海龙 2017 材料导报 31 72

    Chang G, Duan J L, Wang L H, Wang X T, Zhang H L 2017 Mater. Rep. 31 72

    [19]

    Lee S, Lee A, Baek S, Sung Y, Jeong H 2022 Diamond Relat. Mater. 130 109428Google Scholar

    [20]

    Yu H T, Feng Y Y, Chen C, Zhang Z X, Cai Y, Qin M M, Feng W 2021 Carbon 179 348Google Scholar

    [21]

    Ma J K, Shang T Y, Ren L L, Yao Y M, Zhang T, Xie J Q, Zhang B T, Zeng X L, Sun R, Xu J B, Wong C P 2020 Chem. Eng. J. 380 122550Google Scholar

    [22]

    Desai A, Mahajan S, Subbarayan G, Jones W, Geer J, Sammakia B 2005 J. Electron. Packag. 128 92Google Scholar

    [23]

    Feng Y, Zhu J, Tang D W 2015 Phys. Lett. A 379 382Google Scholar

    [24]

    Zhang D, Tang Y Z, Wang S, Lin H, He Y 2022 Compos. Interfaces 29 899Google Scholar

    [25]

    潘东楷, 宗志成, 杨诺 2022 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [26]

    Thompson A P, Aktulga H M, Berger R, et al. 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [27]

    Sha Z D, Branicio P S, Pei Q X, Sorkin V, Zhang Y W 2013 Comput. Mater. Sci 67 146Google Scholar

    [28]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. 112 17281Google Scholar

    [29]

    Liu Y Z, Yue J C, Liu Y N, Nian L L, Hu S Q 2023 Chin. Phys. Lett. 40 086301Google Scholar

    [30]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707Google Scholar

    [31]

    秦成龙, 罗祥燕, 谢泉, 吴乔丹 2022 71 030202Google Scholar

    Qin C L, Luo X Y, Xie Q, Wu Q D 2022 Acta Phys. Sin. 71 030202Google Scholar

    [32]

    Yao Z H, Wang J S, Li B W, Liu G R 2005 Phys. Rev. B 71 085417Google Scholar

    [33]

    Li J Q, Shen H J 2018 Mol. Phys. 116 1297Google Scholar

    [34]

    朱亚波, 鲍振, 蔡存金, 杨玉杰 2009 58 7833Google Scholar

    Zhu Y B, Bao Z, Cai C J, Yang Y J 2009 Acta Phys. Sin. 58 7833Google Scholar

    [35]

    Seberry J 2017 Orthogonal Designs (Wollongong: Springer Cham) pp1–430

    [36]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

  • 图 1  金刚石/碳纳米管模型及计算原理 (a) 金刚石/碳纳米管模型; (b) 计算原理

    Fig. 1.  Diamond/CNT model and calculation principle: (a) Diamond/CNT model; (b) calculation principle.

    图 2  不同温度下体系的温度分布及界面热导 (a) 温度分布; (b) 界面热导随温度的变化

    Fig. 2.  System temperature distribution and ITC at different temperatures: (a) Temperature distribution; (b) variation of ITC with temperature.

    图 3  不同温度下近界面处金刚石和碳纳米管的声子态密度 (a) 300 K; (b) 500 K; (c) 700 K; (d) 900 K. (e) 不同温度下体系界面处的声子态密度; (f) 不同温度下近界面处金刚石和碳纳米管的重叠能

    Fig. 3.  VDOS of diamond and CNT close to interface at different temperatures: (a) 300 K; (b) 500 K; (c) 700 K; (d) 900 K. (e) VDOS at system interface at different temperatures; (f) overlap energy of diamond and CNT close to interface at different temperatures.

    图 4  不同层数碳纳米管对应金刚石/碳纳米管体系的温度分布和界面热导 (a) 体系沿z轴的温度分布; (b) 界面热导随碳纳米管层数的变化

    Fig. 4.  Temperature distribution and ITC of diamond/CNT system with different CNT layers: (a) Temperature distribution of the system along z axis; (b) variation of ITC with CNT layers.

    图 5  不同碳纳米管层数对应近界面处的金刚石和碳纳米管的声子态密度 (a) 2层; (b) 3层; (c) 4层; (d) 6层; (e) 8层. (f) 不同碳纳米管层数对应金刚石/碳纳米管界面处的声子态密度; (g) 不同碳纳米管层数对应体系中近界面处金刚石和碳纳米管的重叠能

    Fig. 5.  VDOS of diamond and CNT close to interface with different layers of CNT: (a) 2 layers; (b) 3 layers; (c) 4 layers; (d) 6 layers; (e) 8 layers. (f) VDOS at diamond/CNT interface with different CNT layers; (g) overlap energy of diamond and CNT close to interface with different CNT layers.

    图 6  金刚石/碳纳米管复合材料界面热导随碳纳米管长径比的变化

    Fig. 6.  Variation of ITC with length-to-diameter ratio (L/d) of CNT.

    图 7  不同碳纳米管长径比对应近界面处的金刚石和碳纳米管的声子态密度 (a) L/d = 2.3; (b) L/d = 2.6; (c) L/d = 3.0; (d) L/d = 4.5; (e) L/d = 6.0; (f) L/d = 12.4. (g) 不同碳纳米管长径比对应金刚石/碳纳米管界面处的声子态密度; (h) 不同碳纳米管长径比对应体系中近界面处金刚石和碳纳米管的重叠能

    Fig. 7.  VDOS of diamond and CNT close to interface with different CNT length-to-diameter ratio: (a) L/d = 2.3; (b) L/d = 2.6; (c) L/d = 3.0; (d) L/d = 4.5; (e) L/d = 6.0; (f) L/d = 12.4. (g) VDOS at diamond/CNT interface with different CNT length-to-diameter ratio; (h) overlap energy of diamond and CNT close to interface with different CNT length-to-diameter ratio.

    图 8  正交试验结果分析 (a) 各因素水平均值表; (b) 最优组温度分布

    Fig. 8.  Orthogonal test result analysis: (a) Average value diagram of each factor and each level; (b) optimal group temperature distribution.

    表 1  正交试验界面热导结果

    Table 1.  ITC results of orthogonal test.

    NumberITC/(MW·m–2·K–1)NumberITC/(MW·m–2·K–1)
    1146.219614.33
    2237.7210816.90
    3394.0611135.93
    4528.63512430.075
    5249.165131264.37
    6103.73514788.3
    71208.07515267.035
    8553.9116137.12
    下载: 导出CSV

    表 2  正交试验极值分析

    Table 2.  Range analysis of orthogonal test.

    Level Temperature
    /K
    Diameter
    /nm
    Layers Length
    /nm
    K1 326.66 568.52 130.75 643.16
    K2 528.72 486.66 296.00 547.98
    K3 499.31 501.28 587.65 399.31
    K4 614.21 412.44 954.50 378.43
    R 287.55 156.08 823.75 264.73
    Optimum level 4 1 4 1
    下载: 导出CSV
    Baidu
  • [1]

    王权杰, 邓宇戈, 王仁宗, 刘向军 2023 72 226301Google Scholar

    Wang Q J, Deng Y G, Wang R Z, Liu X J 2023 Acta Phys. Sin. 72 226301Google Scholar

    [2]

    Hiraiwa A, Kawarada H 2015 J. Appl. Phys. 117 124503Google Scholar

    [3]

    Berman R, Hudson P, Martinez M 1975 J. Phys. C: Solid State Phys. 8 L430Google Scholar

    [4]

    Pernot J, Volpe P N, Omnès F, Muret P, Mortet V, Haenen K, Teraji T 2010 Phys. Rev. B 81 205203Google Scholar

    [5]

    Chow T P, Omura I, Higashiwaki M, Kawarada H, Pala V 2017 IEEE Trans. Electron Devices 64 856Google Scholar

    [6]

    Perez G, Maréchal A, Chicot G, Lefranc P, Jeannin P O, Eon D, Rouger N 2020 Diamond Relat. Mater. 110 108154Google Scholar

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Device Lett. 33 6291745Google Scholar

    [8]

    Sato H, Kasu M 2013 Diamond Relat. Mater. 31 47Google Scholar

    [9]

    Yang Y, Koeck F A, Dutta M, Wang X, Chowdhury S, Nemanich R J 2017 J. Appl. Phys. 122 155304Google Scholar

    [10]

    Hodgson M, Lohstroh A, Sellin P, Thomas D 2017 Meas. Sci. Technol. 28 105501Google Scholar

    [11]

    Bodie C S, Lioliou G, Lefeuvre G, Barnett A M 2022 Appl. Radiat. Isot. 180 110027Google Scholar

    [12]

    Chaudhuri S K, Kleppinger J W, Karadavut O, Mandal K C 2021 IEEE Electron Device Lett. 42 200Google Scholar

    [13]

    Yang Z, Zhou L H, Luo W, Wan J Y, Dai J Q, Han X G, Fu K, Henderson D, Yang B, Hu L B 2016 Nanoscale 8 19326Google Scholar

    [14]

    Due J, Robinson A J 2013 Appl. Therm. Eng. 50 455Google Scholar

    [15]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 R2514Google Scholar

    [16]

    Marconnet A M, Panzer M A, Goodson K E 2013 Rev. Mod. Phys. 85 1295Google Scholar

    [17]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 Int. J. Heat Mass Transfer 67 1024Google Scholar

    [18]

    常国, 段佳良, 王鲁华, 王西涛, 张海龙 2017 材料导报 31 72

    Chang G, Duan J L, Wang L H, Wang X T, Zhang H L 2017 Mater. Rep. 31 72

    [19]

    Lee S, Lee A, Baek S, Sung Y, Jeong H 2022 Diamond Relat. Mater. 130 109428Google Scholar

    [20]

    Yu H T, Feng Y Y, Chen C, Zhang Z X, Cai Y, Qin M M, Feng W 2021 Carbon 179 348Google Scholar

    [21]

    Ma J K, Shang T Y, Ren L L, Yao Y M, Zhang T, Xie J Q, Zhang B T, Zeng X L, Sun R, Xu J B, Wong C P 2020 Chem. Eng. J. 380 122550Google Scholar

    [22]

    Desai A, Mahajan S, Subbarayan G, Jones W, Geer J, Sammakia B 2005 J. Electron. Packag. 128 92Google Scholar

    [23]

    Feng Y, Zhu J, Tang D W 2015 Phys. Lett. A 379 382Google Scholar

    [24]

    Zhang D, Tang Y Z, Wang S, Lin H, He Y 2022 Compos. Interfaces 29 899Google Scholar

    [25]

    潘东楷, 宗志成, 杨诺 2022 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [26]

    Thompson A P, Aktulga H M, Berger R, et al. 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [27]

    Sha Z D, Branicio P S, Pei Q X, Sorkin V, Zhang Y W 2013 Comput. Mater. Sci 67 146Google Scholar

    [28]

    Heinz H, Vaia R A, Farmer B L, Naik R R 2008 J. Phys. Chem. 112 17281Google Scholar

    [29]

    Liu Y Z, Yue J C, Liu Y N, Nian L L, Hu S Q 2023 Chin. Phys. Lett. 40 086301Google Scholar

    [30]

    Jund P, Jullien R 1999 Phys. Rev. B 59 13707Google Scholar

    [31]

    秦成龙, 罗祥燕, 谢泉, 吴乔丹 2022 71 030202Google Scholar

    Qin C L, Luo X Y, Xie Q, Wu Q D 2022 Acta Phys. Sin. 71 030202Google Scholar

    [32]

    Yao Z H, Wang J S, Li B W, Liu G R 2005 Phys. Rev. B 71 085417Google Scholar

    [33]

    Li J Q, Shen H J 2018 Mol. Phys. 116 1297Google Scholar

    [34]

    朱亚波, 鲍振, 蔡存金, 杨玉杰 2009 58 7833Google Scholar

    Zhu Y B, Bao Z, Cai C J, Yang Y J 2009 Acta Phys. Sin. 58 7833Google Scholar

    [35]

    Seberry J 2017 Orthogonal Designs (Wollongong: Springer Cham) pp1–430

    [36]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

  • [1] 刘东静, 周福, 胡志亮, 黄家强. 石墨烯/GaN异质结构界面热输运性质的分子动力学研究.  , 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟.  , 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [4] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [5] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟.  , 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [6] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [7] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究.  , 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [8] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [9] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究.  , 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [10] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [11] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性.  , 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [12] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [13] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [14] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟.  , 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [15] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象.  , 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [16] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [17] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [18] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  997
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-05-08
  • 上网日期:  2024-05-16
  • 刊出日期:  2024-07-05

/

返回文章
返回
Baidu
map