Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration

Ye Han-Sheng Gu Yu-Qiu Huang Wen-Hui Wu Yu-Chi Tan Fang Zhang Xiao-Hui Wang Shao-Yi

Citation:

Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration

Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi
PDF
HTML
Get Citation
  • All-laser-driven Thomson scattering based on laser wakefield acceleration can provide high quality X-ray and greatly reduce the source size. Compared with two-pulse setting, the self-reflecting setting can reduce the requirement for temporal and spatial synchronization in experiment. However, it is difficult to optimize X-ray because Thomson scattering is coupled with laser wakefield acceleration in this process. In this paper, we correct theory formula through numerical simulation, and analyze the parameters quantitatively in laser wakefield acceleration and Thomson scattering, such as spot size, duration and energy of laser and electron beam, and reflectivity of plasma mirror. Then we can trace the parameters by using the modified formula rather than the numerical simulation with similar accuracy and less time. The modified formula is also used to optimize the self-reflecting all-laser-driven Thomson scattering X-ray under the given laser conditions. The optimal X-ray luminance and photon number can be obtained by changing the plasma density and the position of the plasma mirror.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401100) and the Science Challenge Project, China (Grant No. TZ2018005)
    [1]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [2]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [5]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [6]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [7]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [8]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [9]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [10]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [11]

    Sarri G, Corvan D J, Schumaker W, Cole J, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [12]

    Ta Phuoc K, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [13]

    Shaw J M, Bernstein A C, Zgadzaj R, Hannasch A, LaBerge M, Chang Y Y, Weichman K, Welch J, Henderson W, Tsai H E, Fazel N, Wang X, Ditmire T, Donovan M, Dyer G, Gaul E, Gordon J, Martinez M, Spinks M, Toncian T, Wagner C, Downer M C 2017 arXiv: 1705.08637 vl[physics.acc-ph]

    [14]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [15]

    Bruemmer T, Debus A, Pausch R, Osterhoff J, Gruener F 2020 Phys. Rev. Accel. Beams 23 031601Google Scholar

    [16]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational ScienceICCS Amsterdam, Netherlands, April 21–24, 2002 p342

    [17]

    Lu W 2006 Ph. D. Dissertation (Los Angeles: University of California)

    [18]

    Chen P, Hortonsmith G, Ohgaki T 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 335 107Google Scholar

    [19]

    王广辉, 王晓方, 董克攻 2012 61 165201Google Scholar

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201Google Scholar

    [20]

    Decker C D, Mori W B, Tzeng K C, Katsouleas T 1996 Phys. Plasmas 3 2047Google Scholar

    [21]

    Li G, Ain Q, Li S, Saeed M, Papp D, Kamperidis C, Hafz N A M 2020 Plasma Phys. Controlled Fusion 62 055004Google Scholar

    [22]

    Gotzfried J, Dopp A, Gilljohann M, Foerster M, Ding H, Schindler S, Schilling G, Buck A, Veisz L, Karsch S 2020 Phys. Rev. X 10 041015Google Scholar

    [23]

    Couperus J P, Pausch R, Kohler A, Zarini O, Kramer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [24]

    Modena Z N A, Dangor A E, Clayton C E, Marsh K A, Joshi C, MalkaV, Darrow C B, Danson C N, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [25]

    Amorim L D, Najafabadi N V 2018 Advanced Accelerator Concepts Breckenridge, Colorado, USA, August 12–17, 2018 p345

    [26]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [27]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J V, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [28]

    Swanson K K, Tsai H E, Barber S K, Lehe R, Mao H S, Steinke S, van Tilborg J, Nakamura K, Geddes C G R, Schroeder C B, Esarey E, Leemans W P 2017 Phys. Rev. Accel. Beams 20 051301Google Scholar

    [29]

    Thaury F Q C, Anna L, Tiberio C 2007 Nat. Phys. 3 424Google Scholar

    [30]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003Google Scholar

    [31]

    Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425Google Scholar

  • 图 1  自反射全光汤姆孙散射示意图

    Figure 1.  Schematic of self-reflecting all-laser-driven Thomson scattering.

    图 2  LWFA中激光的参量的变化 (a) 焦斑; (b) 脉宽; (c) 能量(图中能量低于能量截止线时包含激光能量和尾场能量); (d) 激光能量衰减长度

    Figure 2.  Evolution of laser parameters in LWFA: (a) Laser spot size; (b) laser duration; (c) laser energy (energy in figure contains laser parts and wakefield parts when it is below dashed line); (d) pump depletion length.

    图 3  LWFA中电子的参量变化 (a)电子平均能量; (b)失相长度; (c) 0.5 mm处轴线上的纵向尾场分布; (d)电子电荷量; (e)密度为4 × 1018 cm–3时电子束焦斑和脉宽; (f) 密度为4 × 1018 cm–3时电子束发散角

    Figure 3.  Evolution of electron parameters in LWFA: (a) Average energy; (b) dephasing length; (c) longitudinal electric field on axis when d = 0.5 mm; (d) charge; (e) spot size and duration when np = 4 × 1018 cm–3; (f) divergence angle when np = 4 × 1018 cm–3.

    图 4  PM反射率

    Figure 4.  Reflectivity of PM.

    图 5  汤姆孙散射X射线参数 (a) 能谱; (b) 角分布

    Figure 5.  X-ray from Thomson sacttering: (a) Energy spectrum; (b) angle divergence distribution.

    图 6  X射线优化结果 (a) 亮度; (b) 光子数; (c) 光子能量

    Figure 6.  Optimization results of X-ray: (a) Brightness; (b) photon number; (c) photon energy.

    表 1  等离子体密度4 × 1018 cm–3, PM位置2.5 mm时修正后的公式计算和数值模拟的部分参数比较

    Table 1.  Comparison of modified formula calculation and numerical simulation when plasma density is 4 × 1018 cm–3 and PM position is 2.5 mm away.

    方法经过LWFA的激光电子束X射线
    焦斑/μm脉宽/fs能量损失/(%·mm–1)能量/MeV焦斑/μm发散角/mrad光子数/107亮度/(1018photons·s–1·
    mm–2·mrad–2·
    (0.1%BW)–1)
    修正公式107174602.0184.11.3
    数值模拟106174501.8164.01.6
    DownLoad: CSV
    Baidu
  • [1]

    Albert F, Thomas A G R 2016 Plasma Phys. Controlled Fusion 58 103001Google Scholar

    [2]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [5]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [6]

    Umstadter D P 2015 Contemp. Phys. 56 417Google Scholar

    [7]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [8]

    Liu C, Golovin G, Chen S, Zhang J, Zhao B, Haden D, Banerjee S, Silano J, Karwowski H, Umstadter D 2014 Opt. Lett. 39 4132Google Scholar

    [9]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2014 Nat. Photonics 8 28Google Scholar

    [10]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [11]

    Sarri G, Corvan D J, Schumaker W, Cole J, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [12]

    Ta Phuoc K, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [13]

    Shaw J M, Bernstein A C, Zgadzaj R, Hannasch A, LaBerge M, Chang Y Y, Weichman K, Welch J, Henderson W, Tsai H E, Fazel N, Wang X, Ditmire T, Donovan M, Dyer G, Gaul E, Gordon J, Martinez M, Spinks M, Toncian T, Wagner C, Downer M C 2017 arXiv: 1705.08637 vl[physics.acc-ph]

    [14]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [15]

    Bruemmer T, Debus A, Pausch R, Osterhoff J, Gruener F 2020 Phys. Rev. Accel. Beams 23 031601Google Scholar

    [16]

    Fonseca R 2002 Proceedings of the Second International Conference on Computational ScienceICCS Amsterdam, Netherlands, April 21–24, 2002 p342

    [17]

    Lu W 2006 Ph. D. Dissertation (Los Angeles: University of California)

    [18]

    Chen P, Hortonsmith G, Ohgaki T 1995 Nucl. Instrum. Methods Phys. Res., Sect. A 335 107Google Scholar

    [19]

    王广辉, 王晓方, 董克攻 2012 61 165201Google Scholar

    Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201Google Scholar

    [20]

    Decker C D, Mori W B, Tzeng K C, Katsouleas T 1996 Phys. Plasmas 3 2047Google Scholar

    [21]

    Li G, Ain Q, Li S, Saeed M, Papp D, Kamperidis C, Hafz N A M 2020 Plasma Phys. Controlled Fusion 62 055004Google Scholar

    [22]

    Gotzfried J, Dopp A, Gilljohann M, Foerster M, Ding H, Schindler S, Schilling G, Buck A, Veisz L, Karsch S 2020 Phys. Rev. X 10 041015Google Scholar

    [23]

    Couperus J P, Pausch R, Kohler A, Zarini O, Kramer J M, Garten M, Huebl A, Gebhardt R, Helbig U, Bock S, Zeil K, Debus A, Bussmann M, Schramm U, Irman A 2017 Nat. Commun. 8 487Google Scholar

    [24]

    Modena Z N A, Dangor A E, Clayton C E, Marsh K A, Joshi C, MalkaV, Darrow C B, Danson C N, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [25]

    Amorim L D, Najafabadi N V 2018 Advanced Accelerator Concepts Breckenridge, Colorado, USA, August 12–17, 2018 p345

    [26]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [27]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, Tilborg J V, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [28]

    Swanson K K, Tsai H E, Barber S K, Lehe R, Mao H S, Steinke S, van Tilborg J, Nakamura K, Geddes C G R, Schroeder C B, Esarey E, Leemans W P 2017 Phys. Rev. Accel. Beams 20 051301Google Scholar

    [29]

    Thaury F Q C, Anna L, Tiberio C 2007 Nat. Phys. 3 424Google Scholar

    [30]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003Google Scholar

    [31]

    Ride S K, Esarey E, Baine M 1995 Phys. Rev. E 52 5425Google Scholar

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] Zhang Xiao-Hui, Wu Yu-Chi, Zhu Bin, Wang Shao-Yi, Yan Yong-Hong, Tan Fang, Yu Ming-Hai, Yang Yue, Li Gang, Zhang Jie, Wen Jia-Xing, Zhou Wei-Min, Su Jing-Qin, Gu Yu-Qiu. Application of low flow rate micro gas cell nozzle in laser wakefield acceleration. Acta Physica Sinica, 2023, 72(3): 035202. doi: 10.7498/aps.72.20221868
    [4] Zhou Shao-Tong, Ren Xiao-Dong, Huang Xian-Bin, Xu Qiang. Soft x-ray imaging system used for Z-pinch experiments. Acta Physica Sinica, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [5] Yan Wen-Chao, Zhu Chang-Qing, Wang Jin-Guang, Feng Jie, Li Yi-Fei, Tan Jun-Hao, Chen Li-Ming. All-optical Thomson scattering. Acta Physica Sinica, 2021, 70(8): 084104. doi: 10.7498/aps.70.20210319
    [6] Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong. Optical design of X-ray focusing telescope. Acta Physica Sinica, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [7] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [8] Zhang Yao, Tang Shan-Zhi, Li Ming, Wang Li-Chao, Gao Jun-Xiang. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources. Acta Physica Sinica, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [9] Yan Wen-Chao, Su Lu-Ning, Lin Xiao-Xuan, Du Fei, Yuan Da-Wei, Liao Guo-Qian, Liu Cheng, Shen Zhong-Wei, Chen Li-Ming, Li Yu-Tong, Ma Jing-Long, Lu Xin, Wang Xuan, Wang Zhao-Hua, Wei Zhi-Yi, Sheng Zheng-Ming, Zhang Jie. A high efficiency highly oriented pyrolitic graphite X-ray spectrometer. Acta Physica Sinica, 2014, 63(17): 170701. doi: 10.7498/aps.63.170701
    [10] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [11] Liu Shen-Ye, Huang Yi-Xiang, Hu Xin, Zhang Ji-Yan, Yang Guo-Hong, Li Jun, Yi Rong-Qing, Du Hua-Bing, Ding Yong-Kun. Experimental research on X-ray radiation and ablation of an Ag foil targets irradiated by high intensity 2ω0 laser light beam. Acta Physica Sinica, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] Huang Kai, Yan Wen-Chao, Li Ming-Hua, Tao Meng-Ze, Chen Yan-Ping, Chen Jie, Yuan Xiao-Hui, Zhao Jia-Rui, Ma Yong, Li Da-Zhang, Gao Jie, Chen Li-Ming, Zhang Jie. X-ray source produced by laser solid target interaction at kHz repetition rate. Acta Physica Sinica, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [13] Zhou Shao-Tong, Li Jun, Huang Xian-Bin, Cai Hong-Chun, Zhang Si-Qun, Li Jing, Duan Shu-Chao, Zhou Rong-Guo. Experimental investigation of radiation charactristics of Ti wire X-pinch X-ray source on Yang accelerator. Acta Physica Sinica, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [14] Sun Yan-Qian, Chen Li-Ming, Zhang Lu, Mao Jing-Yi, Liu Feng, Li Da-Zhang, Liu Cheng, Li Wei-Chang, Wang Zhao-Hua, Li Ying-Jun, Wei Zhi-Yi, Zhang Jie. X-ray source generation under laser-Ar cluster interaction. Acta Physica Sinica, 2012, 61(7): 075206. doi: 10.7498/aps.61.075206
    [15] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  5465
  • PDF Downloads:  180
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2021
  • Accepted Date:  03 April 2021
  • Available Online:  14 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map