Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hyperfine structure of ro-vibrational transition of HD in magnetic field

Tang Jia-Dong Liu Qian-Hao Cheng Cun-Feng Hu Shui-Ming

Citation:

Hyperfine structure of ro-vibrational transition of HD in magnetic field

Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming
PDF
HTML
Get Citation
  • The precise measurement of the infrared transition of hydrogen-deuterium (HD) molecule is used to test quantum electrodynamics and determine the proton-to-electron mass ratio. The saturated absorption spectrum of the R(1) line in the first overtone (2–0) band of HD molecule has been measured by the comb locked cavity ring-down spectroscopy (CRDS) method in Hefei [Tao L G, et al. 2018 Phys. Rev. Lett. 120 153001], and also by the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) method in Amsterdam [Cozijn F M J, et al. 2018 Phys. Rev. Lett. 120 153002 ]. However, there is a significant difference between the line center positions obtained in these two studies. Later the discrepancy was found to be due to unexpected asymmetry in the line shape of the saturated absorption spectrum of the HD molecule. A possible reason is the superposition of multiple hyperfine splitting peaks in the saturated spectrum. However, this model strongly depends on the population transfer caused by intermolecular collisions, which is a lack of experimental and theoretical support. In this paper, the hyperfine structures of the ro-vibrational transition of HD are calculated in the coupled and uncoupled representations. The hyperfine structures of the R(0), P(1) and R(1) lines in the (2–0) band of HD molecule under different external magnetic fields are calculated. The corresponding spectral structures at a temperature of 10 K are simulated. The results show that the transition structure of HD molecule changes significantly with the externally applied magnetic field. The frequency shift of each hyperfine transition line also increases with the intensity of external magnetic field increasing. When the intensity of the external magnetic field is sufficiently high, the hyperfine lines are clearly divided into two branches, and they can be completely separated from each other. Because the dynamic effect of intermolecular collision and the energy level population transfer are very sensitive to the energy level structure, the comparison between experiment and theory will help us to analyze the mechanism of the observed special profiles. It will allow us to obtain accurate frequencies of these transitions, which can be used for testing the fundamental physics.
      Corresponding author: Hu Shui-Ming, smhu@ustc.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB21020100) and the National Natural Science Foundation of China (Grant No. 21688102)
    [1]

    Miller C E, Brown L R, Toth R A, Benner D C, Devi V M 2005 C. R. Phys. 6 876Google Scholar

    [2]

    Salumbides E J, Dickenson G D, Ivanov T I, Ubachs W 2011 Phys. Rev. Lett. 107 043005Google Scholar

    [3]

    Puchalski M, Komasa J, Czachorowski P, Pachucki K 2016 Phys. Rev. Lett. 117 263002Google Scholar

    [4]

    Korobov V I, Hilico L, Karr J P 2017 Phys. Rev. Lett. 118 233001Google Scholar

    [5]

    Biesheuvel J, Karr J P, Hilico L, Eikema K S E, Ubachs W, Koelemeij J C J 2016 Nat. Commun. 7 10385Google Scholar

    [6]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801Google Scholar

    [7]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum. 88 043108Google Scholar

    [8]

    Tao L G, Liu A W, Pachucki K, Komasa J, Sun Y R, Wang J, Hu S M 2018 Phys. Rev. Lett. 120 153001Google Scholar

    [9]

    Wang J, Sun Y R, Tao L G, Liu A W, Hu S M 2017 J. Chem. Phys. 147 091103Google Scholar

    [10]

    Tao L G, Hua T P, Sun Y R, Wang J, Liu A W, Hu S M 2018 J. Quant. Spectrosc. Radiat. Transfer 210 111Google Scholar

    [11]

    Liu G L, Wang J, Tan Y, Kang P, Bi Z, Liu A W, Hu S M 2019 J. Quant. Spectrosc. Radiat. Transfer 229 17Google Scholar

    [12]

    Hua T P, Sun Y R, Wang J, Hu C L, Tao L G, Liu A W, Hu S M 2019 Chin. J. Chem. Phys. 32 107Google Scholar

    [13]

    Cozijn F M J, Duprxe P, Salumbides E J, Eikema K S E, Ubachs W 2018 Phys. Rev. Lett. 120 153002Google Scholar

    [14]

    Diouf M L, Cozijn F M J, Darquié B, Salumbides E J, Ubachs W 2019 Opt. Lett. 44 4733Google Scholar

    [15]

    Hua T P, Sun Y R, Hu S M 2020 Opt. Lett. 45 4863Google Scholar

    [16]

    Quinn W E, Baker J M, LaTourrette J T, Ramsey N F 1958 Phys. Rev. 112 1929Google Scholar

    [17]

    Dupre P 2020 Phys. Rev. A 101 022504Google Scholar

    [18]

    Komasa J, Puchalski M, Pachucki K 2020 Phys. Rev. A 102 012814Google Scholar

    [19]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [20]

    Breit G 1929 Phys. Rev. 34 553Google Scholar

    [21]

    Bowater I C, Brown J M, Carrington A 1973 Proc. R. Soc. London, Ser. A 333 265Google Scholar

    [22]

    Ramsey N F, Lewis H R 1957 Phys. Rev. 108 1246Google Scholar

    [23]

    Borde C, Hall J L, Kunasz C V, Hummer D G 1976 Phys. Rev. A 14 236Google Scholar

    [24]

    Hall J L, Borde C J, Uehara K 1976 Phys. Rev. Lett. 37 1339Google Scholar

  • 图 1  在磁场中测定HD分子振转跃迁

    Figure 1.  Determination of the ro-vibrational transition of HD molecule in magnetic field.

    图 2  耦合表象下HD分子的角动量耦合示意图

    Figure 2.  Angular momentums of the HD molecule in the coupled representation.

    图 3  计算得到的HD分子ν = 2—0带R(0)线的所有超精细跃迁谱线的频率偏移及其对应的相对线强度(有部分弱线在显示范围之外)

    Figure 3.  Calculated frequency shifts of all hyperfine transition lines in the R(0) line in the ν = 2–0 band and their corresponding line intensities (some weak lines are outside the display range).

    图 4  计算得到的HD分子ν = 2—0带P(1)线的所有超精细跃迁谱线的频率偏移及其对应的相对线强度(有部分弱线在显示范围之外)

    Figure 4.  Calculated frequency shifts of all hyperfine transition lines of ν = 2–0 band P (1) lines of HD molecule and their corresponding relative line intensities (some weak lines are outside the display range).

    图 5  计算得到的HD分子ν = 2—0带R(1)线的所有超精细跃迁谱线的频率偏移及其对应的相对线强度(有部分弱线在显示范围之外)

    Figure 5.  Calculated frequency shifts of all hyperfine transition lines of HD molecule ν = 2–0 band R (1) line and their corresponding relative line intensities (some weak lines are outside the display range).

    图 6  HD分子R(0) (ν = 2—0)跃迁在轴向磁场下, Δm = + 1和Δm = –1两支超精细跃迁谱线光谱中心的频率偏移与磁场强度的关系

    Figure 6.  Relationship between the magnetic field intensity and the frequency shift of the spectral center of the Δm = + 1 and Δm = – 1 hyperfine transitions of the R(0) (ν = 2–0) line of HD.

    图 7  在10 K的低温条件下, 分别在不同外加磁场下模拟的HD分子(2—0)带R(0)线、P(1)线、R(1)线的光谱

    Figure 7.  Simulated spectra of R (0), P (1) and R (1) lines in the (2–0) band of HD under different magnetic fields at the temperature of 10 K.

    表 1  计算得到的R(0)线所有超精细跃迁谱线的频率偏移及其对应的相对线强度

    Table 1.  Calculated frequency shifts of all hyperfine transition lines in the R(0) line and their corresponding line intensities

    跃迁线0 G 100 G 300 G 1000 G
    频率偏移/kHz相对强度频率偏移/kHz相对强度频率偏移/kHz相对强度频率偏移/kHz相对强度
    Δm = + 1a→A–56.30.3333 –106.90.3333 –208.00.3333 –561.90.3333
    b1→B1–56.30.0000–100.60.1800–216.40.1157–656.90.0197
    b1→B2–1.40.2922–33.30.1533–146.50.2176–516.30.3136
    b1→B353.30.0411323.40.0000940.30.00003108.30.0000
    b2→B1–56.30.2000–461.00.0019–1297.60.0003–4261.10.0000
    b2→B2–1.40.0164–393.70.0018–1227.70.0001–4120.50.0000
    b2→B353.30.1169–37.00.3297–141.00.3329–495.90.3333
    c1→C1–114.10.1439–165.40.1619–286.00.1273–776.70.0315
    c1→C2–56.30.0000–93.40.0640–222.50.0372–699.20.0029
    c1→C3–1.40.0974–2.20.1070–129.50.1688–528.60.2990
    c1→C453.30.0137298.60.0000893.30.00002972.70.0000
    c1→C5179.30.0783432.10.00041032.20.00003181.20.0000
    c2→C1–114.10.0196–525.80.0018–1367.30.0004–4380.90.0000
    c2→C2–56.30.1000–453.80.0025–1303.80.0002–4303.50.0000
    c2→C3–1.40.0219–362.60.0015–1210.80.0003–4132.80.0000
    c2→C453.30.1559–61.90.1248–188.00.0859–631.60.0292
    c2→C5179.30.036071.70.2028–49.10.2465–423.00.3040
    d→D1–114.10.0587–445.70.0018–1309.30.0001–4366.40.0000
    d→D2–56.30.0333–353.70.0170–1198.00.0018–4198.30.0002
    d→D3–1.40.0164–163.30.0232–321.70.0236–867.00.0083
    d→D453.30.1169–84.80.0197–223.80.0063–690.00.0002
    d→D5179.30.107945.60.2716–73.90.3015–442.10.3247
    Δm =–1a→C1–114.10.0587–34.70.0616106.10.0884530.40.2835
    a→C2–56.30.033337.30.0446169.60.0865607.90.0249
    a→C3–1.40.0164128.50.2139262.60.1567778.50.0248
    a→C453.30.1169429.20.00461285.40.00064279.80.0001
    a→C5179.30.1079562.80.00861424.30.00114488.30.0001
    b1→D1–114.10.143945.50.1473164.20.1950545.00.2888
    b1→D2–56.30.0000137.50.1648275.50.1368713.10.0444
    b1→D3–1.40.0974327.90.00851151.70.00034044.40.0000
    b1→D453.30.0137406.40.00811249.60.00084221.40.0001
    b1→D5179.30.0783536.80.00451399.50.00044469.30.0000
    b2→D1–114.10.0196–314.90.0001–917.10.0000–3059.20.0000
    b2→D2–56.30.1000–222.90.0021–805.80.0000–2891.10.0000
    b2→D3–1.40.0219–32.50.249670.40.2653440.20.3123
    b2→D453.30.155946.00.0372168.40.0383617.20.0125
    b2→D5179.30.0360176.40.0442318.30.0297865.20.0085
    c1→E1–56.30.000055.20.3291159.40.3329514.40.3333
    c1→E2–1.40.2922375.00.00191201.00.00014084.70.0000
    c1→E353.30.0411452.70.00231297.20.00034269.70.0000
    c2→E1–56.30.2000–305.30.0003–921.90.0000–3089.90.0000
    c2→E2–1.40.016414.60.2593119.70.2884480.50.3223
    c2→E353.30.116992.30.0737215.90.0450665.50.0110
    d→F–56.30.3333–5.80.333395.30.3333449.30.3333
    DownLoad: CSV
    Baidu
  • [1]

    Miller C E, Brown L R, Toth R A, Benner D C, Devi V M 2005 C. R. Phys. 6 876Google Scholar

    [2]

    Salumbides E J, Dickenson G D, Ivanov T I, Ubachs W 2011 Phys. Rev. Lett. 107 043005Google Scholar

    [3]

    Puchalski M, Komasa J, Czachorowski P, Pachucki K 2016 Phys. Rev. Lett. 117 263002Google Scholar

    [4]

    Korobov V I, Hilico L, Karr J P 2017 Phys. Rev. Lett. 118 233001Google Scholar

    [5]

    Biesheuvel J, Karr J P, Hilico L, Eikema K S E, Ubachs W, Koelemeij J C J 2016 Nat. Commun. 7 10385Google Scholar

    [6]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801Google Scholar

    [7]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum. 88 043108Google Scholar

    [8]

    Tao L G, Liu A W, Pachucki K, Komasa J, Sun Y R, Wang J, Hu S M 2018 Phys. Rev. Lett. 120 153001Google Scholar

    [9]

    Wang J, Sun Y R, Tao L G, Liu A W, Hu S M 2017 J. Chem. Phys. 147 091103Google Scholar

    [10]

    Tao L G, Hua T P, Sun Y R, Wang J, Liu A W, Hu S M 2018 J. Quant. Spectrosc. Radiat. Transfer 210 111Google Scholar

    [11]

    Liu G L, Wang J, Tan Y, Kang P, Bi Z, Liu A W, Hu S M 2019 J. Quant. Spectrosc. Radiat. Transfer 229 17Google Scholar

    [12]

    Hua T P, Sun Y R, Wang J, Hu C L, Tao L G, Liu A W, Hu S M 2019 Chin. J. Chem. Phys. 32 107Google Scholar

    [13]

    Cozijn F M J, Duprxe P, Salumbides E J, Eikema K S E, Ubachs W 2018 Phys. Rev. Lett. 120 153002Google Scholar

    [14]

    Diouf M L, Cozijn F M J, Darquié B, Salumbides E J, Ubachs W 2019 Opt. Lett. 44 4733Google Scholar

    [15]

    Hua T P, Sun Y R, Hu S M 2020 Opt. Lett. 45 4863Google Scholar

    [16]

    Quinn W E, Baker J M, LaTourrette J T, Ramsey N F 1958 Phys. Rev. 112 1929Google Scholar

    [17]

    Dupre P 2020 Phys. Rev. A 101 022504Google Scholar

    [18]

    Komasa J, Puchalski M, Pachucki K 2020 Phys. Rev. A 102 012814Google Scholar

    [19]

    Puchalski M, Komasa J, Pachucki K 2020 Phys. Rev. Lett. 125 253001Google Scholar

    [20]

    Breit G 1929 Phys. Rev. 34 553Google Scholar

    [21]

    Bowater I C, Brown J M, Carrington A 1973 Proc. R. Soc. London, Ser. A 333 265Google Scholar

    [22]

    Ramsey N F, Lewis H R 1957 Phys. Rev. 108 1246Google Scholar

    [23]

    Borde C, Hall J L, Kunasz C V, Hummer D G 1976 Phys. Rev. A 14 236Google Scholar

    [24]

    Hall J L, Borde C J, Uehara K 1976 Phys. Rev. Lett. 37 1339Google Scholar

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [3] Ji Chen. Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [4] Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua. Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules. Acta Physica Sinica, 2023, 72(4): 043301. doi: 10.7498/aps.72.20221957
    [5] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [6] Li Ming, Yao Ning, Feng Zhi-Bo, Han Hong-Pei, Zhao Zheng-Yin. Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells. Acta Physica Sinica, 2018, 67(5): 057101. doi: 10.7498/aps.67.20172213
    [7] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [8] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [9] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2013, 62(13): 133201. doi: 10.7498/aps.62.133201
    [10] Liu Jiang-Ping, Bi Peng, Lei Hai-Le, Li Jun, Wei Jian-Jun. Infrared absorption spectrum of solid deuterium at near-triple point temperature. Acta Physica Sinica, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [11] Wang Xin-Liang, Chen Jie, Wang Ye-Bing, Gao Feng, Zhang Shou-Gang, Liu Hai-Feng, Chang Hong. Measurement of velocity distribution for strontium atom beam by Zeeman Scanning technology. Acta Physica Sinica, 2011, 60(10): 103201. doi: 10.7498/aps.60.103201
    [12] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [13] Li Shu-Guang, Zhou Xiang, Cao Xiao-Chao, Sheng Ji-Teng, Xu Yun-Fei, Wang Zhao-Ying, Lin Qiang. All-optical high sensitive atomic magnetometer. Acta Physica Sinica, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [14] Wang Jin, Hua Jie, Ding Gui-Ying, Chang Xi, Zhang Gang, Jiang Wen-Long. Effects of magnetic field on organic electroluminescence. Acta Physica Sinica, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [15] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [16] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [17] Wang Li-Jun, Yu Hui-Ying. The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [18] Ma Hong-Liang, Lu Jiang, Wang Chun-Tao. Measurement of hyperfine structure spectrum in 56908 nm line of 141Pr+. Acta Physica Sinica, 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [19] Zhao Lu-Ming, Wang Li-Jun. . Acta Physica Sinica, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [20] LI GUANG-WU, MA HONG-LIANG, LI MAO-SHENG, CHEN ZHI-JUN, CHEN MIAO-HUA, LU FU-QUAN, PENG XIAN-JUE, YANG FU-JIA. HYPERFINE STRUCTURE MEASUREMENT IN LaⅡ5d2 1G4 →4f5d 1F3. Acta Physica Sinica, 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
Metrics
  • Abstract views:  5879
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2021
  • Accepted Date:  15 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回
Baidu
map