搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响

李明 姚宁 冯志波 韩红培 赵正印

引用本文:
Citation:

外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响

李明, 姚宁, 冯志波, 韩红培, 赵正印

Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells

Li Ming, Yao Ning, Feng Zhi-Bo, Han Hong-Pei, Zhao Zheng-Yin
PDF
导出引用
  • 研究了外加电场和垒层的Al组分对AlGaN/GaN量子阱中的横向和纵向g因子(g┴和g//)及其各向异性(δg)的影响.纤锌矿体结构的贡献(g//bulk和g┴bulk)是构成Δ g┴=(g┴-g0)=g┴bulk+gw和Δ g//=(g//-g0)=g//bulk的主要部分,但g//bulk和g┴bulk的差值很小且几乎不随外加电场和Al组分改变.当外加电场的方向同极化电场的方向相同(相反)且增加时,g//bulk和g┴bulk的强度同时增加(减小).当外加电场从-1.5×108 V· m-1到1.5×108 V· m-1变化时,异质结界面对Δg┴的贡献(ΓInter)大于0且强度缓慢增加,阱层对Δ g┴的贡献(ΓW)小于0且强度也缓慢增加.然而ΓInter的强度比ΓW大,且后者的强度随着外加电场的改变增加较快,所以δg>0且强度随着外加电场的变化而减小.当垒层的Al组分增加时,如果不考虑应变效应(S1,2=0),g//bulk和g┴bulk的强度同时减小,然而考虑应变效应后(S1,2 ≠ 0),β>1(g┴bulk)和γ>1(g//bulk)的强度随着Al组分的增加而增加.随着垒层Al组分的增加,ΓInter和ΓW的强度都增加,但ΓInter的强度较大且增加得较快,所以δg的强度缓慢增加.Δ g┴的强度先随着Al组分的增加而减小,然后又随着Al组分的增加而增加,因为g┴bulk小于0且强度随着Al组分增加得很快.结果表明,AlGaN/GaN量子阱结构中的电子g因子及其各向异性可以被外加电场、垒层的Al组分、应变效应和量子限制效应共同调制.
    In this paper, we study the effects of external electric field and Al content on the transverse and longitudinal g-factor (g┴ and g//) and its anisotropy (δg) of wurtzite AlGaN/GaN quantum wells (QWs). The Δg┴=(g┴-g0)=g┴bulk + gw and Δg//=(g//-g0)=g//bulk are mainly contributed by the bulk structure (g//bulk and g┴bulk) respectively, but the difference between g//bulk and g┴bulk is small and almost remains unchanged when the external electric field and Al content are varied. So the anisotropy of the g factor in AlGaN/GaN QWs induced by the bulk wurtzite structure is small, while the anisotropy induced by the quantum confined effect (gw) is considerable. When the direction of the external electric field is the same as (opposite to) the polarization electric field, the magnitudes of g//bulk and g┴bulk both increase (decrease) with increasing external electric field. This is induced mainly by the variations of envelope function and confined energy with the electric field. With the external electric field changing from -1.5×108 V·m-1 to 1.5×108 V· m-1, the confined energy ε1 increases slowly, and the magnitude of the envelope function at the left heterointerface increases. So the contribution to Δg┴ from the heterointerface ΓInter is positive and increases slowly, and that from the well ΓW is negative and increases slowly in magnitude. The magnitude of ΓInter is larger than that of ΓW, but the magnitude of the latter increases more rapidly. All the above factors make the g-factor anisotropy δg>0 and decrease in magnitude with electric field increasing. With increasing Al content of the barrier, both β>1 (g┴bulk) and γ>1 (g//bulk) decrease if the strain effects are ignored (S1, 2=0), because the confined energy decreases and the peak of the envelope function shifts towards the left heterointerface. By considering the strain effects (S1, 2 ≠ 0), the magnitude of β>1 (g┴bulk) and γ>1 (g//bulk) increase with Al content increasing. The strain effect has a great influence on the confined potential V(z), leading to the rapid increase of β(z) when z > zp, which the situation for γ (z) is similar to. With increasing Al content, the magnitudes of ΓInter and ΓW both increase, but the magnitude of ΓInter is larger and increases more rapidly. Therefore δg increases slowly. The magnitude of Δ g┴ first decreases with increasing Al content, then it increases with Al content increasing, and since g┴bulk g-factor and its anisotropy in AlGaN/GaN QWs can be greatly modulated by the external electric field, the Al content in the barrier, the strain effects and the quantum confined effect. Results obtained here are of great importance for designing the spintronic devices.
      通信作者: 李明, mingli245@163.com
    • 基金项目: 国家自然科学基金(批准号:61306012)、河南省高等学校青年骨干教师(批准号:2015GGJS-145)、许昌学院杰出青年骨干人才计划、河南省自然科学基金(批准号:162300410237)和河南省科技发展计划(批准号:172102210470)资助的课题.
      Corresponding author: Li Ming, mingli245@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306012), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (Grant No. 2015GGJS-145), the Aid Project for the Leading Young Talents of XuChang University, China, the Natural Science Foundation of Henan Province, China (Grant No. 162300410237), and the Development Project for Science & Technology of Henan Province of China (Grant No. 172102210470).
    [1]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [2]

    Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R, Phillips C C 1991 Phys. Rev. B 44 11345

    [3]

    Hannak R M, Oestreich M, Heberle A P, Rhle W W, Köhler K 1995 Solid State Commun. 93 313

    [4]

    Sirenko A A, Ruf T, Cardona M, Yakovlev D R, Ossau W, Waag A, Landwehr G 1997 Phys. Rev. B 56 2114

    [5]

    Le Jeune P, Robart D, Marie X, Amand T, Brosseau M, Barrau J, Kalevcih V 1997 Semicond. Sci. Technol. 12 380

    [6]

    Tomimoto S, Nozawa S, Terai Y, Kuroda S, Takita K, Masumoto Y 2010 Phys. Rev. B 81 125313

    [7]

    de Sousa R, Das Sarma S 2003 Phys. Rev. B 68 155330

    [8]

    Ivchenko E L, Kiselev A A 1992 Fiz. Tekh. Poluprovodn. (S. Peterburg) 26 1471 [1992 Sov. Phys. Semicond. 26 827]

    [9]

    Ivchenko E, Kiselev A, Willander M 1997 Solid State Commun. 102 375

    [10]

    Kiselev A A, Ivchenko E L, Rössler U 1998 Phys. Rev. B 58 16353

    [11]

    Kiselev A A, Kim K W, Ivchenko E L 1999 Phys. Status Solidi B 215 235

    [12]

    Pfeffer P, Zawadzki W 2006 Phys. Rev. B 74 233303

    [13]

    Roth L M, Lax B, Zwerdling S 1959 Phys. Rev. 114 90

    [14]

    de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E 2006 Phys. Rev. B 73 085316

    [15]

    Toloza Sandoval M A, Ferreira da Silva A, de Andrada e Silva E A, La Rocca G C 2012 Phys. Rev. B 86 195302

    [16]

    Toloza Sandoval1 M A, de Andrada e Silva1 E A, Ferreira da Silva A, La Rocca G C 2016 Semicond. Sci. Technol. 31 115008

    [17]

    Jiang H W, Eli Y 2001 Phys. Rev. B 64 041307

    [18]

    Nitta J, Lin Y, Akazaki T, Koga T 2003 Appl. Phys. Lett. 83 4565

    [19]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [20]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [21]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Superlattices Microstruct. 47 522

    [22]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [23]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [24]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [25]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [26]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [27]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [28]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [29]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [30]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Commun. 151 1958

    [31]

    Li M, Feng Z B, Fan L B, Zhao Y L, Han H P, Feng T H 2016 J. Magnet. Magnet. Mater. 403 81

    [32]

    Zhao Z Y, Wang H L, Li M 2016 Acta Phys. Sin. 65 097101 (in Chinese) [赵正印, 王红玲, 李明 2016 65 097101]

    [33]

    Hao Y F 2014 J. Appl. Phys. 115 244308

    [34]

    Hao Y F 2015 J. Appl. Phys. 117 013911

    [35]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [36]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [37]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [38]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [39]

    Chuang S L Chang C S 1996 Phys. Rev. B 54 2491

    [40]

    Fabian J, Matos-Abiague A, Ertler C, Stano P, Žutić I 2007 Acta Phys. Slovaca 57 677

    [41]

    Yu L S, Qiao D J, Xing Q J, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 238

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

  • [1]

    Hanson R, Witkamp B, Vandersypen L M K, Willems van Beveren L H, Elzerman J M, Kouwenhoven L P 2003 Phys. Rev. Lett. 91 196802

    [2]

    Snelling M J, Flinn G P, Plaut A S, Harley R T, Tropper A C, Eccleston R, Phillips C C 1991 Phys. Rev. B 44 11345

    [3]

    Hannak R M, Oestreich M, Heberle A P, Rhle W W, Köhler K 1995 Solid State Commun. 93 313

    [4]

    Sirenko A A, Ruf T, Cardona M, Yakovlev D R, Ossau W, Waag A, Landwehr G 1997 Phys. Rev. B 56 2114

    [5]

    Le Jeune P, Robart D, Marie X, Amand T, Brosseau M, Barrau J, Kalevcih V 1997 Semicond. Sci. Technol. 12 380

    [6]

    Tomimoto S, Nozawa S, Terai Y, Kuroda S, Takita K, Masumoto Y 2010 Phys. Rev. B 81 125313

    [7]

    de Sousa R, Das Sarma S 2003 Phys. Rev. B 68 155330

    [8]

    Ivchenko E L, Kiselev A A 1992 Fiz. Tekh. Poluprovodn. (S. Peterburg) 26 1471 [1992 Sov. Phys. Semicond. 26 827]

    [9]

    Ivchenko E, Kiselev A, Willander M 1997 Solid State Commun. 102 375

    [10]

    Kiselev A A, Ivchenko E L, Rössler U 1998 Phys. Rev. B 58 16353

    [11]

    Kiselev A A, Kim K W, Ivchenko E L 1999 Phys. Status Solidi B 215 235

    [12]

    Pfeffer P, Zawadzki W 2006 Phys. Rev. B 74 233303

    [13]

    Roth L M, Lax B, Zwerdling S 1959 Phys. Rev. 114 90

    [14]

    de Dios-Leyva M, Reyes-Gómez E, Perdomo-Leiva C A, Oliveira L E 2006 Phys. Rev. B 73 085316

    [15]

    Toloza Sandoval M A, Ferreira da Silva A, de Andrada e Silva E A, La Rocca G C 2012 Phys. Rev. B 86 195302

    [16]

    Toloza Sandoval1 M A, de Andrada e Silva1 E A, Ferreira da Silva A, La Rocca G C 2016 Semicond. Sci. Technol. 31 115008

    [17]

    Jiang H W, Eli Y 2001 Phys. Rev. B 64 041307

    [18]

    Nitta J, Lin Y, Akazaki T, Koga T 2003 Appl. Phys. Lett. 83 4565

    [19]

    Litvinov V I 2003 Phys. Rev. B 68 155314

    [20]

    Litvinov V I 2006 Appl. Phys. Lett. 89 222108

    [21]

    Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2011 Superlattices Microstruct. 47 522

    [22]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1994 Phys. Rev. B 50 8523

    [23]

    de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293

    [24]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [25]

    Yang W, Chang K 2006 Phys. Rev. B 73 113303

    [26]

    Yang W, Chang K 2006 Phys. Rev. B 74 193314

    [27]

    Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312

    [28]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [29]

    Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

    [30]

    Li M, L Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Commun. 151 1958

    [31]

    Li M, Feng Z B, Fan L B, Zhao Y L, Han H P, Feng T H 2016 J. Magnet. Magnet. Mater. 403 81

    [32]

    Zhao Z Y, Wang H L, Li M 2016 Acta Phys. Sin. 65 097101 (in Chinese) [赵正印, 王红玲, 李明 2016 65 097101]

    [33]

    Hao Y F 2014 J. Appl. Phys. 115 244308

    [34]

    Hao Y F 2015 J. Appl. Phys. 117 013911

    [35]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103

    [36]

    Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104

    [37]

    Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [38]

    Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

    [39]

    Chuang S L Chang C S 1996 Phys. Rev. B 54 2491

    [40]

    Fabian J, Matos-Abiague A, Ertler C, Stano P, Žutić I 2007 Acta Phys. Slovaca 57 677

    [41]

    Yu L S, Qiao D J, Xing Q J, Lau S S, Boutros K S, Redwing J M 1998 Appl. Phys. Lett. 73 238

    [42]

    Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303

    [43]

    Suzuki M, Uenoyama T, Yanase A 1995 Phys. Rev. B 52 8132

  • [1] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应.  , 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 红兰, 戈君, 双山, 刘达权. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [4] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质.  , 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [5] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应.  , 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [6] 红兰, 戈君. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2021, (): . doi: 10.7498/aps.70.20210803
    [7] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响.  , 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [8] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [9] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应.  , 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [10] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [11] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应.  , 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [12] 赵正印, 王红玲, 李明. Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba自旋劈裂.  , 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [13] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [14] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [15] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子.  , 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [16] 徐天宁, 吴惠桢, 隋成华. PbTe/PbSrTe半导体非对称量子阱中的Rashba效应.  , 2008, 57(12): 7865-7871. doi: 10.7498/aps.57.7865
    [17] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树. GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究.  , 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [18] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子.  , 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [19] 张红梅, 马东平, 刘德. LiNbO_3:Ni~(2+)的常压能谱和g因子.  , 2002, 51(7): 1554-1558. doi: 10.7498/aps.51.1554
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  5684
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-03-05

/

返回文章
返回
Baidu
map