Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules

Chen Run Shao Xu-Ping Huang Yun-Xia Yang Xiao-Hua

Citation:

Simulation of hyperfine-rotational spectrum of electromagnetic dipole transition rotation of BrF molecules

Chen Run, Shao Xu-Ping, Huang Yun-Xia, Yang Xiao-Hua
PDF
HTML
Get Citation
  • The transition dipole of the hyperfine-rotation spectrum of J = 1←0 within the vibronic ground (X1Σ, v = 0) state of BrF molecule is derived, and thus, the transition selection rules are summarized as follows: ΔJ = ±1; ΔF1 = 0, ±1 and ΔF = 0, ±1, and those of ΔF1 = ΔF are intense while those of ΔF1 ≠ ΔF are weak. Some spectral lines result from both the electric dipole transition and nuclear magnetic dipole transition due to perturbations, however, the magnetic dipole transition only contributes about one-billionth in the spectral intensity. The spectral linewidth is determined to be about 18 kHz by calculating the spectral transition probability. The obtained spectral linewidth and relative intensities are consistent with the experimental results. Additionally, the hyperfine-rotation spectral positions are determined by diagonalizing the Hamiltonian matrix in the basis of |JI1F1I2F$\rangle $, which is also in good agreement with the experiments within 10–8 (one-fiftieth of the spectral line width). Hence, the microwave hyperfine-rotation spectrum is simulated. In addition, we find that the nuclear spin-spin interaction not only slightly shifts the hyperfine-rotation spectral positions but also changes the sequence of the spectra. As to those unavailable constants of molecules, the fairly precise molecular constants can be achieved by quantum chemical calculation, say, by employing MOLPRO program, and then the simulated spectra can guide the spectral assignment. Besides the guidance of spectral assignment, our results are also helpful for other relevant applications such as in absolute single quantum state preparation.
      Corresponding author: Shao Xu-Ping, xuping1115@ntu.edu.cn ; Yang Xiao-Hua, xhyang@ntu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004199).
    [1]

    Bernath P F 2020 ????? (Oxford: Oxford University Press)

    [2]

    Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar

    [3]

    Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar

    [4]

    Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar

    [5]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [6]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [7]

    Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [8]

    Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar

    [9]

    Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar

    [10]

    Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar

    [12]

    William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar

    [13]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [14]

    Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar

    [15]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar

    [16]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [17]

    Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar

    [18]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [19]

    Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [20]

    Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [21]

    Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [22]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [23]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [24]

    Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar

    [25]

    Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar

    [26]

    Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar

    [27]

    Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar

    [28]

    Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar

    [29]

    Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399

    [30]

    Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar

    [31]

    Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar

    [32]

    Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar

    [33]

    Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar

    [34]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar

    [35]

    Brown J M, Carrington A 2003 Cambridge University Press

    [36]

    Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar

    [37]

    Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar

    [38]

    Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar

    [39]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar

  • 图 1  79BrF(上)和81BrF(下)振动基态(X1Σ, v = 0)下的超精细能级. 图中还标明了各能级的能量值和量子数

    Figure 1.  Hyperfine-rotation energy levels of 79BrF (upper) and 81BrF (lower) in the vibronic ground state (X1Σ, v = 0). The quantum numbers and the values of the levels are labeled as well.

    图 2  BrF振动基态(X1Σ, v = 0)下J = 1←0转动超精细跃迁光谱模拟(下图), 红线代表79BrF, 黑线代表81BrF. 两同位素丰度相差很小, 使得它们的光谱强度几乎相等. 超高分辨的光谱模拟见上图(79BrF)和中图(81BrF), 其中, 谱线1.5, 11.5, 2, 1.5, 21.5, 1和2.5, 21.5, 2的相对强度极小, 导致它们无法观测到(蓝圈部分)

    Figure 2.  Simulated hyperfine-rotation spectra (lower) of the J = 1←0 transition within the vibronic ground state (X1Σ, v = 0) of BrF of its two isotopes, 79BrF in Red and 81BrF in black. Their spectral intensities are almost the same accordingly due to their nearly equal natural abundance of the two isotopes. Details of the spectra of 79BrF (upper) and 81BrF (medium) of the unresolved spectra (lower) are plotted as well. Intensities of the spectra F1, F = 1.5, 1–1.5, 2, 1.5, 2–1.5, 1 and 2.5, 2–1.5, 2 are too small to observe, as shown in the blue circles.

    表 1  BrF(X1Σ, v = 0)分子常数

    Table 1.  Molecular parameters of BrF(X1Σ, v = 0)

    79BrF81BrF
    B/MHz10628.4630210577.63957
    D/kHz12.02811.956
    eqQ/MHz1086.89197907.97681
    C1/kHz89.05195.818
    C2/kHz–24.17–24.54
    C3/kHz–7.15–7.71
    C4/kHz4.865.24
    DownLoad: CSV

    表 2  BrF分子振动基态(X1Σ, v = 0)中J = 1←0跃迁的转动超精细光谱计算值(单位: MHz), 同时列出了其与实验值的偏差和归一化光谱强度

    Table 2.  Calculated hyperfine-rotation spectra (in MHz) of the J = 1←0 transition in the vibronic ground state (X1Σ, v = 0) of BrF molecule. Deviations (in MHz) from the experimental spectra and the normalized intensity are listed as well.

    $F_1',F'\text{-}F''_1,F'' $79BrF81BrF强度
    (归一化)
    计算值误差a计算值误差a
    0.5, 0–1.5, 120986.07440.000320928.793300.1428
    0.5, 1–1.5, 120986.1035–0.001120928.82360.00020.0917
    1.5, 1–1.5, 121475.0918021337.38540.00010.3571
    1.5, 2–1.5, 121475.073021337.36600.0713
    2.5, 2–1.5, 121203.17340.000121110.335800.6427
    0.5, 1–1.5, 220986.0937020928.8131–0.00020.3570
    1.5, 1–1.5, 221475.082021337.37490.0714
    1.5, 2–1.5, 221475.0632021337.3556–0.00010.6427
    2.5, 2–1.5, 221203.163621110.32530.0713
    2.5, 3–1.5, 221203.1484021110.310901
    σb0.00040.0001
    a 计算值减去参考文献中的实验值[37], 误差缺失表示谱线强度太弱而实验无法观测到.
    b σ为计算总体方差.
    DownLoad: CSV

    表 3  BrF振动基态下的转动超精细跃迁偶极矩

    Table 3.  Hyperfine-rotation transition dipoles of BrF within its vibronic ground state.

    $ (J' = 1)F_1', F' $$(J'' = 0) F_1'', F''$
    0.5, 00.5, 11.5, 11.5, 22.5, 22.5, 3
    1.5, 10.22470.11240.56160.11231.01100
    1.5, 200.56170.11231.01100.11221.5728
    DownLoad: CSV
    Baidu
  • [1]

    Bernath P F 2020 ????? (Oxford: Oxford University Press)

    [2]

    Kennedy C J, Oelker E, Robinson J M, Bothwell T, D. Kedar, Milner W R, Marti G E, Derevianko A, Ye J 2020 Phys. Rev. Lett. 125 201302Google Scholar

    [3]

    Changala P B, Weichman M L, Lee K F, Fermann M E, Ye J 2019 Science 363 49Google Scholar

    [4]

    Denis M, Pi A, Timmermans R, Eliav E, Borschevsky A 2019 Phys. Rev. A 99 042512Google Scholar

    [5]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [6]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [7]

    Bouchendira R, Cladé P, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [8]

    Webb J K, Flambaum V V, Churchill C W, Drinkwater M J, Barrow J D 1999 Phys. Rev. Lett. 82 884Google Scholar

    [9]

    Liang Q, Chan Y C, Changala P B, Nesbitt D J, Ye J, Toscano J 2021 Proc. Natl. Acad. Sci. 118 e2105063118Google Scholar

    [10]

    Kolkowitz S P I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [11]

    Valtolina G, Matsuda K, Tobias W G, Li J R, Marco L D, Ye J 2020 Nature 588 239Google Scholar

    [12]

    William D, Phillips 1998 Rev. Mod. Phys. 70 721Google Scholar

    [13]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [14]

    Barry F J, McCarron J D, Norrgard B E, Steinecker H M, DeMille D 2014 Nature 512 286Google Scholar

    [15]

    Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2019 Science 363 853Google Scholar

    [16]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [17]

    Mccarron D J, Norrgard E B, Steinecker M H, Demille D 2015 New J. Phys. 17 035014Google Scholar

    [18]

    Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar

    [19]

    Ni K K, Ospelkaus S, Miranda M, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar

    [20]

    Peter, Molony K, Philip, Gregory D, Zhonghua, Ji, Bo, Lu, Michael, Köppinger P 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [21]

    Takekoshi T, Reichsoellner L, Schindewolf A, Hutson J M, Sueur C, Dulieu O, Ferlaino F, Grimm R, Naegerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [22]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [23]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [24]

    Matsuda K, Marco L D, Li J R, Tobias W G, Ye J 2020 Science 370 1324Google Scholar

    [25]

    Gu Y, Chen K, Huang Y, Yang X 2019 Chin. Phys. B 28 43702Google Scholar

    [26]

    Huang Y, Shao X, Yang X 2016 J. Phys. B 49 135101Google Scholar

    [27]

    Chen K, Huang Y, Yang X 2017 Chin. J Chem. Phys. 30 418Google Scholar

    [28]

    Smith D F, Tidwell M, Williams D V P 1950 Phys. Rev. 77 420Google Scholar

    [29]

    Calder V, Hansen D, Hoffman D, Ruedenberg K 1972 J Chem. Phys. 49 5399

    [30]

    Nair K, Hoeft J, Tiemann E 1979 J Mol. Spectrosc. 78 506Google Scholar

    [31]

    Clyne M A A, Curran A H, Coxon J A 1976 J Mol. Spectrosc. 63 43Google Scholar

    [32]

    Aldegunde J, Hutson J M 2008 Phys. Rev. A 78 033434Google Scholar

    [33]

    Wang D, Shao X, Huang Y, Li C, Yang X 2021 Chin. Phys. B 30 113301Google Scholar

    [34]

    Yang Q S, Li S C, Yu Y, Gao T 2018 J Phys. Chem. A 122 3021Google Scholar

    [35]

    Brown J M, Carrington A 2003 Cambridge University Press

    [36]

    Arima A, Horie H, Sano M 1957 Prog. Theor. Exp. Phys. 17 567Google Scholar

    [37]

    Müller H S, Gerry M C 1995 J. Chem. Phys. 103 577Google Scholar

    [38]

    Shao X, Gong T, Wu L, Yang X 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1005Google Scholar

    [39]

    Ospelkaus S, Ni K K, Quéméner G, Neyenhuis B, Wang D, Miranda M D, Bohn J, Ye J, Jin D 2010 Phys. Rev. Lett. 104 030402Google Scholar

  • [1] Liu Xin, Wen Wei-Qiang, Li Ji-Guang, Wei Bao-Ren, Xiao Jun. Experimental and theoretical research progress of 2P1/2 2P3/2 transitions of highly charged boron-like ions. Acta Physica Sinica, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [3] Ji Chen. Nuclear structure effects to atomic Lamb shift and hyperfine splitting. Acta Physica Sinica, 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [4] Wang Xia, Jia Fang-Shi, Yao Ke, Yan Jun, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Hyperfine interaction constants and Landé g factors of clock states of Al-like ions. Acta Physica Sinica, 2023, 72(22): 223101. doi: 10.7498/aps.72.20230940
    [5] Tang Jia-Dong, Liu Qian-Hao, Cheng Cun-Feng, Hu Shui-Ming. Hyperfine structure of ro-vibrational transition of HD in magnetic field. Acta Physica Sinica, 2021, 70(17): 170301. doi: 10.7498/aps.70.20210512
    [6] Lou Bing-Qiong, Li Fang, Wang Pei-Yan, Wang Li-Ming, Tang Yong-Bo. Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes. Acta Physica Sinica, 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [7] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [8] Pei Dong-Liang, He Jun, Wang Jie-Ying, Wang Jia-Chao, Wang Jun-Min. Measurement of the fine structure of cesium Rydberg state. Acta Physica Sinica, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [9] Ren Ya-Na, Yang Bao-Dong, Wang Jie, Yang Guang, Wang Jun-Min. Measurement of the magnetic dipole hyperfine constant Ahfs of cesium 7S1/2 state. Acta Physica Sinica, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [10] Yang Bao-Dong, Gao Jing, Wang Jie, Zhang Tian-Cai, Wang Jun-Min. Multiple electromagnetically-induced transparency of hyperfine levels in cesium 6S1/2 -6P3/2 -8S1/2 ladder-type system. Acta Physica Sinica, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [11] Hou Bi-Hui, Li Yong, Liu Guo-Qing, Zhang Gui-Hua, Liu Feng-Yan, Tao Shi-Quan. ESR study of the Mn2+ center in LiNbO3. Acta Physica Sinica, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [12] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [13] Wang Li-Jun, Yu Hui-Ying. The coherent excitation property of a two-level atom w itha hyperfine structure in narrow band laser field. Acta Physica Sinica, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [14] Ma Hong-Liang, Lu Jiang, Wang Chun-Tao. Measurement of hyperfine structure spectrum in 56908 nm line of 141Pr+. Acta Physica Sinica, 2003, 52(3): 566-569. doi: 10.7498/aps.52.566
    [15] Zhao Lu-Ming, Wang Li-Jun. . Acta Physica Sinica, 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [16] LI GUANG-WU, MA HONG-LIANG, LI MAO-SHENG, CHEN ZHI-JUN, CHEN MIAO-HUA, LU FU-QUAN, PENG XIAN-JUE, YANG FU-JIA. HYPERFINE STRUCTURE MEASUREMENT IN LaⅡ5d2 1G4 →4f5d 1F3. Acta Physica Sinica, 2000, 49(7): 1256-1259. doi: 10.7498/aps.49.1256
    [17] CHEN ZHI-JUN, MA HONG-LIANG, CHEN MIAO-HUA, LI MAO-SHENG, SHI WEI, LU FU-QUAN, TANG JIA-YONG. THE HYPERFINE STRUCTURE OF BaⅡ. Acta Physica Sinica, 1999, 48(11): 2038-2041. doi: 10.7498/aps.48.2038
    [18] . Acta Physica Sinica, 1964, 20(8): 822-824. doi: 10.7498/aps.20.822
    [19] О СВЕРХТОНКИХ СТРУКТУРАХ La57. Acta Physica Sinica, 1958, 14(6): 488-496. doi: 10.7498/aps.14.488
    [20] CHAO KUANG-TSENG, CHENG CHI-HAO. INTENSITY DISTRIBUTION OF THE HYPERFINE STRUCTURE OF MERCURY RESONANCE RADIATION. Acta Physica Sinica, 1955, 11(4): 359-362. doi: 10.7498/aps.11.359
Metrics
  • Abstract views:  3560
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2022
  • Accepted Date:  14 November 2022
  • Available Online:  09 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map