搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列型微波黑体的发射率分析

金铭 白明 苗俊刚

引用本文:
Citation:

阵列型微波黑体的发射率分析

金铭, 白明, 苗俊刚

Emissivity study of the array shaped blackbody in the microwave band

Jin Ming, Bai Ming, Miao Jun-Gang
PDF
导出引用
  • 在微波波段, 用于标定温度和辐射功率的发射率接近于1的标准发射率器件, 即微波频段的黑体, 结构形式一般为表面涂覆吸波材料的金属锥体阵列. 这种黑体器件常用于为微波辐射计提供参考亮温, 要求具有高发射率和均匀的温度分布. 对此类黑体器件的发射率评估主要基于基尔霍夫热平衡定律, 即通过评估反射率来确定发射率. 已报道的研究集中在黑体发射率随频率的变化趋势, 较少针对其随方向和极化状态的变化趋势. 本文针对此类周期型排布的黑体, 提出基于Floquet模式分析的反射率评估方法, 相比已报道的基于后向散射的评估方法, 具有更大的适用范围. 基于这种方法, 对某黑体的发射率随频率、角度和极化状态的变化规律进行了计算分析. 分析结果表明: 此黑体发射率在X到K波段内随频率提高而增大; 在发射率较低的低频处, 垂直极化与水平极化的发射率随俯仰角的变化趋势不同, 并且存在垂直极化发射率随俯仰角增大而明显降低的现象. 这些规律均与其物理上低频段内涂层对电磁波的衰减特性相符合.
    Different from that in the optical band, the blackbody in the microwave band is constructed in a coated cone array structure. The blackbody of this type can be used in calibrating microwave radiometers with standard brightness radiations, and needs to have a uniform surface thermal distribution and high emissivity. The emissivity study of such a blackbody can be performed based on the Kirchhoff's law of thermal equilibrium, in a reflection determination routine. The emissivity characteristics varying with frequency have been intensively studied, but their variations with direction and polarization have not received much attentions. Starting from the Floquet mode analysis, a reflection evaluation scheme for the blackbody is presented, which is more robust than that based on the back-ward RCS determination. Based on the presented scheme, the trends of emissivity varying with frequency, direction, polarization are studied, for a microwave blackbody design. Results show that the emissivity rises as the frequency rises in a range from X band to K band; and in the low frequency band, the trend of the vertical polarization emissivity varying with elevation angle is different from that of the horizontal polarization emissivity, and there exists an obvious phenomenon that the vertical polarization emissivity declines with the increase of elevation angle. These phenomena are related to the electromagnetic absorption characteristics of the coating layer.
    • 基金项目: 中国重点实验室基金(批准号: 9140c5305021005)资助的课题.
    • Funds: Project supported by the Foundation of Nation Key Laboratory of China (Grant No. 9140c5305021005).
    [1]

    Surussavadee C, Staelin D 2008 IEEE Trans. Geosci. Remote Sens. 46 99

    [2]

    Burrage D, Wesson J, Miller 2008 IEEE Trans. Geosci. Remote Sens. 46 765

    [3]

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 1321 (in Chinese) [梁子长, 金亚秋 2003 52 1321]

    [4]

    Li Z, Wei E B, Tian J W 2007 Acta Phys. Sin. 56 3028 (in Chinese) [李志, 魏恩泊, 田纪伟 2007 56 3028]

    [5]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 59 2156]

    [6]

    Randa J, Cox A, Walker D 2006 Proc. IGARSS, Denver, USA, July 31-August 4, 2006 p3996

    [7]

    Yan W, Lu W, Shi J K, Ren J Q, Wang R 2011 Acta Phys. Sin. 60 099401 (in Chinese) [严卫, 陆文, 施健康, 任建奇, 王蕊 2011 60 099401]

    [8]

    Nian F, Yang Y J, Chen Y M, Xu D Z, Wang W 2007 J. Astron. Metrol. Measurem. z1 27 (in Chinese) [年丰, 杨于杰, 陈云梅, 徐德忠, 王伟 2007 宇航计测技术学报 z1 27]

    [9]

    Nian F, Yang Y, Wang W 2009 J. Sys. Engineer. Electron. 20 6

    [10]

    Jackson D, Gasiewski 2000 Proc. IGARSS Honolulu, Hawaii, July 24-28, 2000 2827

    [11]

    Wang J H, Miao J G, Yang Y J, Chen Y M 2008 IEEE Trans. Anten. Propag. 56 2656

    [12]

    Wang J H, Yang Y J, Miao J G, Chen Y M 2010 IEEE Trans. Anten. Propag. 58 1173

    [13]

    Gu D Z, Houtz D, Randa J, Walker D 2011 IEEE Trans. Geosci. Remote Sens. 49 3443

    [14]

    Bucci O, Franceschetti G 1971 IEEE Trans. Anten. Propag. 19 96

    [15]

    Moharam M, Gaylord T 1982 J. Opt. Soc. Am. 72 1385

    [16]

    Marly N, Baekelandt B, De Zutter D, Pues H 1995 IEEE Trans. Anten. Propag. 43 1281

    [17]

    Trintinalia L, Ling H 2004 IEEE Trans. Anten. Propag. 52 2253

    [18]

    Lou Z, Jin J M 2003 Microwave Opt. Tech. Lett. 37 203

    [19]

    Yang H, Weng F, Lü L, Lu N, Liu G, Bai M, Qian Q, He J, Xu H 2011 IEEE Trans. Anten. Propag. 49 4452

    [20]

    Xie B, Chen S 1998 Chin. Phys. 7 670

    [21]

    Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y, Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese) [杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞 2009 58 901]

    [22]

    Zhang Z Y, Lin S J 1995 Microwave Radiometer Metrology Technology and Application (Beijing: Publishing House of Electronic Industry) pp50-53 (in Chinese) [张组荫, 林士杰 1995 微波辐射计测量技术及应用 (北京: 电子工业出版社) 第50-53页]

    [23]

    Ge D B, Yan Y B 2002 Finite Difference Time Domain Method for Electromagnetic Waves (2nd Ed.) (Xi'an: Xidian Pulishing House) pp225-250, 279-284 (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法(第二版) (西安: 西安电子科技大学出版社) 第225-250页, 第279-284页]

  • [1]

    Surussavadee C, Staelin D 2008 IEEE Trans. Geosci. Remote Sens. 46 99

    [2]

    Burrage D, Wesson J, Miller 2008 IEEE Trans. Geosci. Remote Sens. 46 765

    [3]

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 1321 (in Chinese) [梁子长, 金亚秋 2003 52 1321]

    [4]

    Li Z, Wei E B, Tian J W 2007 Acta Phys. Sin. 56 3028 (in Chinese) [李志, 魏恩泊, 田纪伟 2007 56 3028]

    [5]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 59 2156]

    [6]

    Randa J, Cox A, Walker D 2006 Proc. IGARSS, Denver, USA, July 31-August 4, 2006 p3996

    [7]

    Yan W, Lu W, Shi J K, Ren J Q, Wang R 2011 Acta Phys. Sin. 60 099401 (in Chinese) [严卫, 陆文, 施健康, 任建奇, 王蕊 2011 60 099401]

    [8]

    Nian F, Yang Y J, Chen Y M, Xu D Z, Wang W 2007 J. Astron. Metrol. Measurem. z1 27 (in Chinese) [年丰, 杨于杰, 陈云梅, 徐德忠, 王伟 2007 宇航计测技术学报 z1 27]

    [9]

    Nian F, Yang Y, Wang W 2009 J. Sys. Engineer. Electron. 20 6

    [10]

    Jackson D, Gasiewski 2000 Proc. IGARSS Honolulu, Hawaii, July 24-28, 2000 2827

    [11]

    Wang J H, Miao J G, Yang Y J, Chen Y M 2008 IEEE Trans. Anten. Propag. 56 2656

    [12]

    Wang J H, Yang Y J, Miao J G, Chen Y M 2010 IEEE Trans. Anten. Propag. 58 1173

    [13]

    Gu D Z, Houtz D, Randa J, Walker D 2011 IEEE Trans. Geosci. Remote Sens. 49 3443

    [14]

    Bucci O, Franceschetti G 1971 IEEE Trans. Anten. Propag. 19 96

    [15]

    Moharam M, Gaylord T 1982 J. Opt. Soc. Am. 72 1385

    [16]

    Marly N, Baekelandt B, De Zutter D, Pues H 1995 IEEE Trans. Anten. Propag. 43 1281

    [17]

    Trintinalia L, Ling H 2004 IEEE Trans. Anten. Propag. 52 2253

    [18]

    Lou Z, Jin J M 2003 Microwave Opt. Tech. Lett. 37 203

    [19]

    Yang H, Weng F, Lü L, Lu N, Liu G, Bai M, Qian Q, He J, Xu H 2011 IEEE Trans. Anten. Propag. 49 4452

    [20]

    Xie B, Chen S 1998 Chin. Phys. 7 670

    [21]

    Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y, Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese) [杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞 2009 58 901]

    [22]

    Zhang Z Y, Lin S J 1995 Microwave Radiometer Metrology Technology and Application (Beijing: Publishing House of Electronic Industry) pp50-53 (in Chinese) [张组荫, 林士杰 1995 微波辐射计测量技术及应用 (北京: 电子工业出版社) 第50-53页]

    [23]

    Ge D B, Yan Y B 2002 Finite Difference Time Domain Method for Electromagnetic Waves (2nd Ed.) (Xi'an: Xidian Pulishing House) pp225-250, 279-284 (in Chinese) [葛德彪, 闫玉波 2002 电磁波时域有限差分方法(第二版) (西安: 西安电子科技大学出版社) 第225-250页, 第279-284页]

  • [1] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究.  , 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [2] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源.  , 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [3] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法.  , 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [4] 程柏璋, 祝玉林, 伊洋, 陶鑫, 贾岩, 刘东青, 程海峰. 电致红外发射率动态调控器件研究进展.  , 2021, 70(20): 204205. doi: 10.7498/aps.70.20210211
    [5] 程柏璋, 刘东青. 电致红外发射率动态调控器件研究进展.  , 2021, (): .
    [6] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性.  , 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [7] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估.  , 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [8] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析.  , 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [9] 楚化强, 冯艳, 曹文健, 任飞, 顾明言. 灰气体加权和辐射模型综合评估及分析.  , 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [10] 张璐, 董云松, 景龙飞, 林雉伟, 谭秀兰, 况龙钰, 黎航, 尚万里, 张文海, 李志超, 詹夏宇, 袁光辉, 李海, 江少恩, 杨家敏, 丁永坤. 低密度泡沫金提升黑腔腔壁再发射率的实验研究.  , 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [11] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾. 黑体辐射法测量电介质内部被超短激光脉冲加工后的温度.  , 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [12] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法.  , 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [13] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法.  , 2015, 64(7): 079501. doi: 10.7498/aps.64.079501
    [14] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究.  , 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [15] 施健康, 陆文, 严卫, 艾未华. 星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导.  , 2013, 62(7): 078402. doi: 10.7498/aps.62.078402
    [16] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验.  , 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [17] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除.  , 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [18] 刘李辉, 邹宏新, 刘曲, 李玺. 199Hg+光频标的黑体辐射频移.  , 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [19] 严卫, 陆文, 施健康, 任建奇, 王蕊. 法拉第旋转对空间被动微波遥感的影响及消除.  , 2011, 60(9): 099401. doi: 10.7498/aps.60.099401
    [20] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究.  , 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
计量
  • 文章访问数:  7731
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-13
  • 修回日期:  2012-01-18
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map