搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

252Cf自发裂变中子发射率符合测量的回归分析

李永明 王亮 陈想林 阮念寿 赵德山

引用本文:
Citation:

252Cf自发裂变中子发射率符合测量的回归分析

李永明, 王亮, 陈想林, 阮念寿, 赵德山

Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission

Li Yong-Ming, Wang Liang, Chen Xiang-Lin, Ruan Nian-Shou, Zhao De-Shan
PDF
导出引用
  • 252Cf同位素源具有标准的自发裂变中子能谱,但由于其半衰期较短,应用中常需要对源强进行标定修正.随着源年龄增加,来自源中250Cf和248Cm自发裂变的影响愈加凸显,不能简单按252Cf的衰变规律计算源中子发射率,而通过锰浴活化的间接测量方法周期较长,且在源强低于104 n/s时误差较大.最近,基于中子多重性计数的源强绝对测量算法已得到验证.本文进一步从点模型假设的测量方程出发,在将符合计数率与总中子计数率关联的基础上,分别对符合计数率随源位置、符合门宽的变化关系进行回归分析,提取变化过程的特征系数,建立了两种避规效率变化的252Cf中子发射率测量方法,并基于JCC-51型中子符合测量装置开展实验验证.结果表明:两种回归分析方法的测量值均与标称值的修正结果在2%的偏差范围内一致;反推求得装置中轴线上的探测效率也与基于MCNPX程序的蒙特卡罗模拟计算值相符.研究结果可为活度信息不明的252Cf源强标定及符合测量装置的效率刻度提供便携准确的实验方法.
    The 252Cf isotope sources have a recommended standard neutron spectrum of spontaneous fission, and have been widely used in scientific researches, such as the detection efficiency calibration of neutron detectors, the characterization of neutron dose equivalent meters, the active analysis of special nuclear materials, etc. However, it is often necessary to correct the neutron emission rate due to its short half-life of 2.645 years. As the source age increases the contributions from 250Cf and 248Cm spontaneous fission become more significant, thus the neutron emission rate cannot be calculated simply according to the 252Cf decay law. In addition, the indirect measurement method by manganese bath activation needs a long period more than 8 hours; and it will have a large uncertainty while the source strength is lower than 104 n/s. In order to develop a more portable measurement method for larger suitable dynamic range, the comprehensive algorithms based on the neutron multiplicity counting are studied in this paper. On the basis of the measurement equations under the point model assumption, the neutron coincidence counting rate is correlated with the total neutron counting rate, and then the regression analyses with different coincidence gates and different source locations in the counter are performed. On the assumption that the average neutron die-away time is constant in the sensitive range of detection system, therefore the characteristic coefficient from the changing process can be extracted, and two kinds of methods of measuring the neutron strength are established, which are independent of the efficiency variation. The verification experiments are carried out by the JCC-51 neutron coincidence counter. It is shown that the values measured by the two regression methods are consistent with the corrected results of the nominal value within 2% deviation. Furthermore, the detection efficiency is inversed by dividing the total neutron counting rate with the neutron emission rate when the source is placed at the central axis, which accords with the result of Monte Carlo simulation by using the MCNPX code well. It can provide an accurate method of determining the neutron emission rate of 252Cf spontaneous fission, and also an approach to calibrating the detection efficiency of neutron coincidence counter while the source strength is unknown.
    • 基金项目: 中国工程物理研究院材料研究所特聘基金(批准号:TP201302-6)资助的课题.
    • Funds: Project supported by the Special Engage Foundation of Institute of Materials in China Academy of Engineering Physics, China (Grant No. TP201302-6).
    [1]

    David T, Roberto B, Roberto M, Alan T, Andreas Z 2018 Radiat. Prot. Dosim. 180 21

    [2]

    Tadashi A, Toshikazu S, Ikuo M, Masakuni N, Yuichi O 1991 IEEE Trans. Nucl. Sci. 38 1040

    [3]

    Reeder P L, Bowyer S M 2002 Nucl. Instrum. Methods Phys. Res. A 484 469

    [4]

    Lawrence C C, Flaska M M, Ojaruega M, Andreas E, Clarke S D, Pozzi S A, Becchetti F D 2010 IEEE Nulcear Science Symposium & Medical Imaging Conference Knoxville, USA, October 30-November 6, 2010 p110

    [5]

    Józefowicz K, Golnik N, Tulik P, Zielczyński M 2007 Radiat. Prot. Dosim. 126 134

    [6]

    Thiem N L, Hoai N T, Khai T N, Giap V T 2017 Nucl. Eng. Technol. 49 277

    [7]

    Mihalczo J T, Mullens J A, Mattingly J K, Valentine T E 2000 Nucl. Instrum. Methods Phys. Res. A 450 531

    [8]

    Pozzi S A, Segovia J 2002 Nucl. Instrum. Methods Phys. Res. A 491 326

    [9]

    Roberts N J, Jones L N 2007 Radiat. Prot. Dosim. 126 83

    [10]

    Hwang S T, Lee K 1988 Nucl. Instrum. Methods Phys. Res. A 273 381

    [11]

    Croft S, Henzlov D 2013 Nucl. Instrum. Methods Phys. Res. A 714 5

    [12]

    Ridnik T, Dubi C, Israelashvili I, Bagi J, Huszti J 2014 Nucl. Instrum. Methods Phys. Res. A 735 53

    [13]

    Ensslin N, Harker W C, Krick M S, Langner D G, Pickrell M M, Stewart J E 1998 Los Alamos National Laboratory Report LA-13422-M

    [14]

    Francesca F, Paolo P 2010 Radiat. Meas. 45 1034

    [15]

    Berndt R, Brutscher J, Mortreau P 2014 Symposium on International Safeguards: Linking Strategy, Implementation and People Vienna, Austria, October 20-24, 2014 p1

    [16]

    Pelowitz D B 2011 Los Alamos National Laboratory Report LA-CP-11-00438

  • [1]

    David T, Roberto B, Roberto M, Alan T, Andreas Z 2018 Radiat. Prot. Dosim. 180 21

    [2]

    Tadashi A, Toshikazu S, Ikuo M, Masakuni N, Yuichi O 1991 IEEE Trans. Nucl. Sci. 38 1040

    [3]

    Reeder P L, Bowyer S M 2002 Nucl. Instrum. Methods Phys. Res. A 484 469

    [4]

    Lawrence C C, Flaska M M, Ojaruega M, Andreas E, Clarke S D, Pozzi S A, Becchetti F D 2010 IEEE Nulcear Science Symposium & Medical Imaging Conference Knoxville, USA, October 30-November 6, 2010 p110

    [5]

    Józefowicz K, Golnik N, Tulik P, Zielczyński M 2007 Radiat. Prot. Dosim. 126 134

    [6]

    Thiem N L, Hoai N T, Khai T N, Giap V T 2017 Nucl. Eng. Technol. 49 277

    [7]

    Mihalczo J T, Mullens J A, Mattingly J K, Valentine T E 2000 Nucl. Instrum. Methods Phys. Res. A 450 531

    [8]

    Pozzi S A, Segovia J 2002 Nucl. Instrum. Methods Phys. Res. A 491 326

    [9]

    Roberts N J, Jones L N 2007 Radiat. Prot. Dosim. 126 83

    [10]

    Hwang S T, Lee K 1988 Nucl. Instrum. Methods Phys. Res. A 273 381

    [11]

    Croft S, Henzlov D 2013 Nucl. Instrum. Methods Phys. Res. A 714 5

    [12]

    Ridnik T, Dubi C, Israelashvili I, Bagi J, Huszti J 2014 Nucl. Instrum. Methods Phys. Res. A 735 53

    [13]

    Ensslin N, Harker W C, Krick M S, Langner D G, Pickrell M M, Stewart J E 1998 Los Alamos National Laboratory Report LA-13422-M

    [14]

    Francesca F, Paolo P 2010 Radiat. Meas. 45 1034

    [15]

    Berndt R, Brutscher J, Mortreau P 2014 Symposium on International Safeguards: Linking Strategy, Implementation and People Vienna, Austria, October 20-24, 2014 p1

    [16]

    Pelowitz D B 2011 Los Alamos National Laboratory Report LA-CP-11-00438

  • [1] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系.  , 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐.  , 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 程柏璋, 刘东青. 电致红外发射率动态调控器件研究进展.  , 2021, (): .
    [4] 靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究.  , 2021, 70(7): 074202. doi: 10.7498/aps.70.20201648
    [5] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法.  , 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [6] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术.  , 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [7] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国. 离线测量钍快中子裂变反应率方法.  , 2014, 63(16): 162501. doi: 10.7498/aps.63.162501
    [8] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析.  , 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [9] 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫化铀/聚乙烯球壳交替系统中铀-238中子俘获率的测量与分析.  , 2012, 61(10): 102801. doi: 10.7498/aps.61.102801
    [10] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析.  , 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [11] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫. 利用252 Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数.  , 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [12] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法.  , 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [13] 蔡从中, 裴军芳, 温玉锋, 朱星键, 肖婷婷. 选择性激光烧结成型件密度的支持向量回归预测.  , 2009, 58(13): 8-S14. doi: 10.7498/aps.58.8
    [14] 温玉锋, 蔡从中, 裴军芳, 朱星键, 肖婷婷, 王桂莲. AlON-TiN复相材料合成工艺参数的支持向量回归分析.  , 2009, 58(13): 15-S20. doi: 10.7498/aps.58.15
    [15] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究.  , 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [16] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [17] 黄胜年, 陈进贵, 韩洪银. U238自发裂变瞬时中子数目几率分布.  , 1974, 23(1): 46-51. doi: 10.7498/aps.23.46
    [18] 王豫生, 许谨诚. Pu240自发裂变放出瞬时中子数目的几率分布.  , 1974, 23(1): 38-45. doi: 10.7498/aps.23.38
    [19] А.Ф.杜那耶切夫, В.С.潘多也夫, Ю.Д.布罗高舒金, 唐孝威, М.Н.哈恰图梁. 用γ-γ符合方法测量潘诺夫斯基比值.  , 1962, 18(4): 218-220. doi: 10.7498/aps.18.218
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合.  , 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  6982
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2018-10-15
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map