Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical research on ion extraction with resonant charge exchange process

Lu Xiao-Yong Yuan Cheng Gao Yang

Citation:

Numerical research on ion extraction with resonant charge exchange process

Lu Xiao-Yong, Yuan Cheng, Gao Yang
PDF
HTML
Get Citation
  • The electric ion extraction, which plays an important role in productivity and abundance of product, is a critical step in laser isotope separation (LIS) technology. Several collision processes happen during the electric ion extraction, such as resonant and non-resonant charge exchange between ion and atom, the secondary ionization process and the ion-electron recombination. The resonant charge exchange process between target isotope ions and no-target background atoms is one of the major reasons of product contamination. As a result, the study of ion extraction with the consideration of resonant charge exchange process is essential. However, the resonant charge exchange process in ion extraction has not received enough attention. Besides, contradictory findings have been deduced in published studies. Therefore, it is necessary to clarify the effect of resonant charge exchange process in the electric ion extraction. In this article, the particle-in-cell (PIC) method and preprocessing hybrid-PIC method are adopted in both one- and two-dimensional numerical simulation. The preprocessing hybrid-PIC method is a calculation scheme by which accurate results can be obtained with less computational consumption. In this calculation scheme, the PIC method and hybrid-PIC method are used sequentially in different stages of ion extraction process. One-dimensional parallel type simulation cases are carried out under the circumstances of different initial plasma densities, applied voltages and background atom densities. The results show that the resonant charge exchange process happens in both shield layer and sheath layer. The ionic resonant charge exchange proportion in shield layer and sheath layer are related to the ion extraction time and average travel length in background vapor, respectively. Besides, they are proportional to the resonant charge exchange cross section and background atom density. And an empirical formula for deriving the resonant charge exchange ratio roughly is proposed. Two-dimensional simulations are carried out in four electrode configurations: parallel type, alternately biased parallel type, Π-type, and M-type. The extraction mechanisms are discussed and compared with each other. The simulation results show that M-type electrode configuration has the minimum resonant charge exchange ratio and extraction time among the configurations above. The results and conclusions provide an important reference for designing the LIS device.
      Corresponding author: Lu Xiao-Yong, lu-xy15@tsinghua.org.cn
    [1]

    王德武 1999 激光分离同位素理论及其应用(北京: 原子能出版社) 第218页

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing: Atomic Energy Press) p218(in Chinese)

    [2]

    Yamada K, Okada H, Tetsuka T, Yoshioka K 1993 J. Nucl. Sci. Technol. 30 143Google Scholar

    [3]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734Google Scholar

    [4]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064Google Scholar

    [5]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301Google Scholar

    [6]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818Google Scholar

    [7]

    Watanabe J, Okano K 1993 Phys. Fluids. B 1993 3092

    [8]

    Ogura K, Kaburaki H, Shibata T 1993 J. Nucl. Sci. Technol. 30 1248Google Scholar

    [9]

    Zhidkov A G 1998 Phys. Plasmas 5 541Google Scholar

    [10]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367Google Scholar

    [11]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 J. Nucl. Sci. Technol. 34 923Google Scholar

    [12]

    Matsui T, Tsuda S, Tsuchida K, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3527Google Scholar

    [13]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3518Google Scholar

    [14]

    Murakami M, Ueshima Y, Nishihara K 1993 Jpn. J. Appl. Phys. 32 1471Google Scholar

    [15]

    严敏 1994 博士学位论文 (北京: 清华大学)

    Yan M 1994 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [16]

    谢国锋 2004 博士学位论文 (北京: 清华大学)

    Xie G F 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [17]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [18]

    Tskhakaya D, Matyash K, Schneider R Taccogna F 2007 Contrib. Plasma Phys. 47 563Google Scholar

    [19]

    Lu X Y, Yuan C, Zhang X Z, Zhang Z Z 2020 Chin. Phys. B 29 045201Google Scholar

    [20]

    Smirnov B M 2001 Phys. Usp. 44 221Google Scholar

  • 图 1  PIC法计算流程图

    Figure 1.  Schematic diagram of PIC method.

    图 2  一维平行板电场法离子引出示意图

    Figure 2.  Schematic diagram of one dimensional electric ion extraction of parallel type.

    图 3  剩余离子比例随引出时间的变化曲线 (算例1)

    Figure 3.  Plots of remaining ion ratio versus extraction time (Case 1).

    图 4  两侧收集板上的离子沉积能量分布 (算例1) (a) 整体图; (b) 局部放大图

    Figure 4.  Energy distribution of ions deposit on the collection plates (Case 1): (a) General distribution; (b) local distribution.

    图 5  不同初始等离子体密度条件下, 两侧收集板上的离子沉积能量分布(算例1)

    Figure 5.  Energy distribution of ions deposit on the collection plates with several initial plasma densities (Case 1).

    图 6  不同引出电压条件下, 剩余离子比例随引出时间的变化曲线(算例1和算例2)

    Figure 6.  Plots of remaining ion ratio versus extraction time with several applied voltages (Case 1 and Case 2).

    图 7  不同引出电压条件下, 两侧收集板上的离子沉积能量分布(算例1和算例2)

    Figure 7.  Energy distribution of ions deposit on the collection plates with several applied voltages (Case 1 and Case 2).

    图 8  不同背景原子蒸气密度条件下, 剩余离子比例随引出时间的变化曲线(算例1、算例3、算例4)

    Figure 8.  Plots of remaining ion ratio versus extraction time with several background atomic densities (Case 1, Case 3, Case 4).

    图 9  不同背景原子蒸气密度条件下, 两侧收集板上的离子沉积能量分布(算例1、算例3、算例4) (a) 整体图; (b) 局部放大图

    Figure 9.  Energy distribution of ions deposit on the collection plates with several background atomic densities (Case 1, Case 3, Case 4): (a) General distribution; (b) local distribution.

    图 10  两侧收集板上的离子沉积能量分布(算例5)

    Figure 10.  Plots of remaining ion ratio versus extraction time (Case 5).

    图 11  两侧收集板上的离子沉积能量分布(算例5)

    Figure 11.  Energy distribution of ions deposit on the collection plates (Case 5).

    图 12  二维电场法离子引出示意图 (a) 平行板电场法; (b) 交替偏压法; (c) Π型电场法; (d) M型电场法

    Figure 12.  Schematic diagram of two dimensional electric ion extraction: (a) Parallel type; (b) alternately biased parallel type; (c) Π-type; (d) M-type.

    图 13  平行板电场法中, 收集板上的离子沉积能量分布 (a) 同位素A; (b) 同位素B

    Figure 13.  Energy distribution of ions deposit on the collection plates in parallel type: (a) Isotope A; (b) isotope B.

    图 14  交替偏压电场法中, 收集板上的离子沉积能量分布 (a) 同位素A; (b) 同位素B

    Figure 14.  Energy distribution of ions deposit on the collection plates in alternately biased parallel type: (a) Isotope A; (b) isotope B.

    图 15  Π型电场法中, 收集板上的离子沉积能量分布 (a) 同位素A; (b) 同位素B

    Figure 15.  Energy distribution of ions deposit on the collection plates in Π-type: (a) Isotope A; (b) isotope B.

    图 16  M型电场法中, 收集板上的离子沉积能量分布 (a) 同位素A; (b) 同位素B

    Figure 16.  Energy distribution of ions deposit on the collection plates in M-type: (a) Isotope A; (b) isotope B.

    表 1  一维算例的计算条件

    Table 1.  Simulation parameters in onedimensional cases.


    计算参数
    同位素A
    电离率/%
    初始离子密
    度/(109 cm–3)
    引出电
    压/kV
    背景原子密
    度/(1011 cm–3)
    12.55.02.04.0
    22.55.01.04.0
    35.05.02.02.0
    41.255.02.08.0
    550100.010.04.0
    DownLoad: CSV

    表 2  各算例的数值计算结果和公式评估结果

    Table 2.  Simulation and empirical formula results of several simulation cases.

    算例引出时间/μs负极板引出离子比例/%共振电荷转移的比例
    鞘层/%通过鞘层发生共振电荷转移的比例/%屏蔽层/%总比例/%
    137.2384.620.780 (0.846)0.921 (1.000)0.371 (0.395)1.151 (1.241)
    266.7870.240.615 (0.702)0.876 (1.000)0.663 (0.691)1.278 (1.393)
    337.2084.610.384 (0.423)0.454 (0.500)0.192 (0.200)0.576 (0.623)
    437.3684.651.151 (1.693)1.784 (2.000)0.740 (0.785)2.250 (2.478)
    551.6275.780.654 (0.758)0.864 (1.000)0.549 (0.533)1.203 (1.291)
    DownLoad: CSV

    表 3  四种引出构型中同位素A离子与同位素B原子发生共振电荷转移的比例

    Table 3.  Resonant charge exchange ratio between A-ion and B-atom in four electrode configurations above.

    离子引出构型共振电荷转移比例/%
    平行板电场法1.097
    交替偏压电场法0.911
    Π型电场法0.859
    M型电场法0.640
    DownLoad: CSV
    Baidu
  • [1]

    王德武 1999 激光分离同位素理论及其应用(北京: 原子能出版社) 第218页

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing: Atomic Energy Press) p218(in Chinese)

    [2]

    Yamada K, Okada H, Tetsuka T, Yoshioka K 1993 J. Nucl. Sci. Technol. 30 143Google Scholar

    [3]

    Yamada K, Tetsuka T, Deguchi Y 1990 J. Appl. Phys. 67 6734Google Scholar

    [4]

    Yamada K, Tetsuka T, Deguchi Y 1991 J. Appl. Phys. 69 8064Google Scholar

    [5]

    Yamada K, Tetsuka T 1994 J. Nucl. Sci. Technol. 31 301Google Scholar

    [6]

    Kurosawa H, Hasegawa S, Suzuki A 2002 J. Appl. Phys. 91 4818Google Scholar

    [7]

    Watanabe J, Okano K 1993 Phys. Fluids. B 1993 3092

    [8]

    Ogura K, Kaburaki H, Shibata T 1993 J. Nucl. Sci. Technol. 30 1248Google Scholar

    [9]

    Zhidkov A G 1998 Phys. Plasmas 5 541Google Scholar

    [10]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1996 Phys. Plasmas 3 4367Google Scholar

    [11]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 J. Nucl. Sci. Technol. 34 923Google Scholar

    [12]

    Matsui T, Tsuda S, Tsuchida K, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3527Google Scholar

    [13]

    Matsui T, Tsuchida K, Tsuda S, Suzuki K, Shoji T 1997 Phys. Plasmas 4 3518Google Scholar

    [14]

    Murakami M, Ueshima Y, Nishihara K 1993 Jpn. J. Appl. Phys. 32 1471Google Scholar

    [15]

    严敏 1994 博士学位论文 (北京: 清华大学)

    Yan M 1994 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [16]

    谢国锋 2004 博士学位论文 (北京: 清华大学)

    Xie G F 2004 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [17]

    Verboncoeur J P 2005 Plasma Phys. Controlled Fusion 47 A231Google Scholar

    [18]

    Tskhakaya D, Matyash K, Schneider R Taccogna F 2007 Contrib. Plasma Phys. 47 563Google Scholar

    [19]

    Lu X Y, Yuan C, Zhang X Z, Zhang Z Z 2020 Chin. Phys. B 29 045201Google Scholar

    [20]

    Smirnov B M 2001 Phys. Usp. 44 221Google Scholar

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Ma Wei-Cong, Wang Gang. Radiation enhancement phenomenon of isotropic plasma layer coated cylinderical metal antenna. Acta Physica Sinica, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] Zou Xiu, Liu Hui-Ping, Zhang Xiao-Nan, Qiu Ming-Hui. Structure of collisional magnetized plasma sheath with non-extensive distribution of electrons. Acta Physica Sinica, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [3] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [4] Qing Shao-Wei, Li Mei, Li Meng-Jie, Zhou Rui, Wang Lei. Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall. Acta Physica Sinica, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [5] Ni Zhi-Xiang, Zhao Xiao-Yun, Duan Ping, Liu Jin-Yuan. The Bohm criterion of plasma sheath with different species. Acta Physica Sinica, 2011, 60(4): 045205. doi: 10.7498/aps.60.045205
    [6] Zhang Feng-Kui, Ding Yong-Jie. Features of electron-wall collision frequency with saturated sheath in Hall thruster. Acta Physica Sinica, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [7] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [8] Wang Dao-Yong, Ma Jin-Xiu, Li Yi-Ren, Zhang Wen-Gui. Sheath structure of a hot-cathode in plasma. Acta Physica Sinica, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [9] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [10] Liu Cheng-Sen, Wang De-Zhen, Liu Tian-Wei, Wang Yan-Hui. Two-dimensional particle-in-cell simulation of the ion sheath dynamics in plasma source ion implantation of a hemispherical bowl-shaped target. Acta Physica Sinica, 2008, 57(10): 6450-6456. doi: 10.7498/aps.57.6450
    [11] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [12] Huang Yong-Xian, Tian Xiu-Bo, Yang Shi-Qin, Ricky Fu, Paul Chu K.. Effect of rise-time patterns on dynamics of sheath expansion during plasma immersion ion implantation. Acta Physica Sinica, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [13] Zou Xiu. Structure of radio-frequency flat plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [14] Wang Zheng-Xiong, Liu Jin-Yuan, Zou Xiu, Liu Yue, Wang Xiao-Gang. The Bohm criterion for the dusty plasma sheath. Acta Physica Sinica, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [15] Gu Yun-Peng, Ma Teng-Cai. The influence of particle beams on the criterion of Bohm sheath. Acta Physica Sinica, 2003, 52(5): 1196-1202. doi: 10.7498/aps.52.1196
    [16] Hou Lu-Jing, Wang You-Nian. Theoretical study on nonlinear resonances of a charged micro-particle in a RF sheath. Acta Physica Sinica, 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [17] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [18] Qiu Hua-Tan, Wang You-Nian, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [19] DAI ZHONG-LING, WANG YOU-NIAN, MA TENG-CAI. DYNAMICAL MODEL OF THE RADIO-FREQUENCY PLASMA SHEATH. Acta Physica Sinica, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [20] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
Metrics
  • Abstract views:  4368
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2021
  • Accepted Date:  08 March 2021
  • Available Online:  13 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回
Baidu
map