Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall

Qing Shao-Wei Li Mei Li Meng-Jie Zhou Rui Wang Lei

Citation:

Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall

Qing Shao-Wei, Li Mei, Li Meng-Jie, Zhou Rui, Wang Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is widely known that the energy distribution of secondary electrons induced by a single-energy electron beam presents typical bimodal configuration. However, the total velocity distribution of secondary electrons induced by a Maxwellian plasma electron group has not been revealed clearly, due to the lack of detailed theoretical calculation and calculation and experiment result. Therefore, researchers usually function satisfies single-energy distribution ( 0), half-Maxwellian distribution and so on, in order to study the characteristics of stable fluid sheath near a dielectric wall. For this reason, using the Monte Carlo method to simulate the wall secondary electron emission events based on a detailed probabilistic model of secondary electron emission induced by single-energy incident electron beam, we found that, when the incident electron follows an isotropic Maxwellian distribution, the total perpendicular-to-wall velocity distribution of the secondary electrons emitted from dielectric wall follows a three-temperature Maxwellian distribution. In the simulation, the incident angle of the plasma electrons and the emergence angle of the secondary electrons are considered, so the Monte Carlo method can discriminate whether the secondary electron velocity is perpendicular to or parallel to the wall surface. Then, a one-dimensional stable fluid sheath model is established under the wall boundary condition that the secondary electrons obey the three-temperature Maxwellian distribution; and some contrastive studies are made in order to reveal the effect of wall total secondary electron distribution functions such as single-energy distribution, half-Maxwellian distribution, and three-temperature Maxwellian distribution with the sheath characteristics. It is found that the total secondary electron distribution function can significantly influence the ion energy at the sheath interface, the wall surface potential, the potential and electron/ion-density distributions, and so on. Both the ion energy at sheath interface and the wall surface potential increase monotonously with the increase of wall total secondary electron emission coefficient. But the values of three-temperature Maxwellian distribution differ much from that of half-Maxwellian distribution and single-energy distribution. When the total secondary electron follows a three-temperature Maxwellian distribution, the critical space charge saturated sheath has no solution, indicating that with the increase of the wall total secondary electron emission coefficient, the sheath will directly transit from the classic sheath structure to the anti-sheath one. In the future work, a kinetic, static sheath model will be developed in order to study the characteristics of anti-sheath and space charge saturated sheath near a dielectric wall
      Corresponding author: Qing Shao-Wei, qshaowei@cqu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant Nos. CDJZR13140013, 3132014328).
    [1]

    Raitses Y, Staack D, Keidar M, Fisch N J 2005 Phys. Plasmas 12 057104

    [2]

    Mazouffre S, Echegut P, Dudeck M 2007 Plasma Sources Sci. Technol. 16 13

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion Conference (Cleveland, OH: Electric Rocket Propulsion Society) Paper No. IEPC 97-056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126

    [6]

    Campanell M D, Wang H, Kaganovich I D, Khrabrov A V 2015 Plasma Sources Sci. Technol. 24 034010

    [7]

    Qing S W, Yu D R, Wang X G, Duan P 2011 J. Propul. Technol. 32 813

    [8]

    Qing S W, Li H, Wang X G, Song M J, Yu D R 2012 EPL 100 35002

    [9]

    Qing S W, E P, Duan P 2013 Acta Phys. Sin. 62 055202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2013 62 055202]

    [10]

    Zhao X Y, Liu J Y, Duan P, Li Z X 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云, 刘金远, 段萍, 倪致祥 2011 60 045205]

    [11]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys. Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王南, 段萍 2010 59 8692]

    [12]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

    [13]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. Technol. 11 57

    [14]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York: New York Consultants Bureau) p241

    [15]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. Beams 5 124404

    [16]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [17]

    Ordonez C A 1992 Phys. Fluids B 4 778

    [18]

    Schwager L A 1993 Phys. Fluids B 5 631

    [19]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515

    [20]

    Rizopoulou N, Robinson A P L, Coppins M, Bacharis M 2014 Phys. Plasmas 21 103507

    [21]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1]

    Raitses Y, Staack D, Keidar M, Fisch N J 2005 Phys. Plasmas 12 057104

    [2]

    Mazouffre S, Echegut P, Dudeck M 2007 Plasma Sources Sci. Technol. 16 13

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion Conference (Cleveland, OH: Electric Rocket Propulsion Society) Paper No. IEPC 97-056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126

    [6]

    Campanell M D, Wang H, Kaganovich I D, Khrabrov A V 2015 Plasma Sources Sci. Technol. 24 034010

    [7]

    Qing S W, Yu D R, Wang X G, Duan P 2011 J. Propul. Technol. 32 813

    [8]

    Qing S W, Li H, Wang X G, Song M J, Yu D R 2012 EPL 100 35002

    [9]

    Qing S W, E P, Duan P 2013 Acta Phys. Sin. 62 055202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2013 62 055202]

    [10]

    Zhao X Y, Liu J Y, Duan P, Li Z X 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云, 刘金远, 段萍, 倪致祥 2011 60 045205]

    [11]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys. Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王南, 段萍 2010 59 8692]

    [12]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

    [13]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. Technol. 11 57

    [14]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York: New York Consultants Bureau) p241

    [15]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. Beams 5 124404

    [16]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [17]

    Ordonez C A 1992 Phys. Fluids B 4 778

    [18]

    Schwager L A 1993 Phys. Fluids B 5 631

    [19]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515

    [20]

    Rizopoulou N, Robinson A P L, Coppins M, Bacharis M 2014 Phys. Plasmas 21 103507

    [21]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Zou Xiu, Liu Hui-Ping, Zhang Xiao-Nan, Qiu Ming-Hui. Structure of collisional magnetized plasma sheath with non-extensive distribution of electrons. Acta Physica Sinica, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [3] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [4] Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia. Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath. Acta Physica Sinica, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [5] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [6] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [7] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] Zhang Feng-Kui, Ding Yong-Jie. Features of electron-wall collision frequency with saturated sheath in Hall thruster. Acta Physica Sinica, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [9] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [10] Zou Xiu, Ji Yan-Kun, Zou Bin-Yan. The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Acta Physica Sinica, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [11] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [12] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [13] Zou Xiu, Zou Bin-Yan, Liu Hui-Ping. Effect of external magnetic field on ion energy density of collisional radio-frequency sheath. Acta Physica Sinica, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [14] Liu Cheng-Sen, Wang De-Zhen, Liu Tian-Wei, Wang Yan-Hui. Two-dimensional particle-in-cell simulation of the ion sheath dynamics in plasma source ion implantation of a hemispherical bowl-shaped target. Acta Physica Sinica, 2008, 57(10): 6450-6456. doi: 10.7498/aps.57.6450
    [15] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [16] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [18] Qiu Hua-Tan, Wang You-Nian, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [19] DAI ZHONG-LING, WANG YOU-NIAN, MA TENG-CAI. DYNAMICAL MODEL OF THE RADIO-FREQUENCY PLASMA SHEATH. Acta Physica Sinica, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  6344
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2015
  • Accepted Date:  17 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map