-
The Hong-Ou-Mandel (HOM) interferometer using entangled photon source possesses important applications in quantum precision measurement and relevant areas. In this paper, a simultaneous measurement scheme of multiple independent delay parameters based on a cascaded HOM interferometer is proposed. The cascaded HOM interferometer is composed of $ n $ concatenated 50∶50 beam splitters and independent delay parameters$ {\tau }_{1} $ ,$ {\tau }_{2} $ , ···,$ {\tau }_{n} $ . The numbers$ n=1, 2\;\mathrm{a}\mathrm{n}\mathrm{d}\;3 $ refer to the standard HOM interferometer, the second-cascaded HOM interferometer, and the third-cascaded HOM interferometer, respectively. Through the theoretical study of the cascaded HOM interference effect based on frequency entangled photon pairs, it can be concluded that there is a corresponding relationship between the dip position and the independent delay parameter in the second-order quantum interferogram. In the standard HOM interferometer, there is a dip in the second-order quantum interferogram, which can realize the measurement of delay parameter$ {\tau }_{1} $ . In the second-cascaded HOM interferometer, there are two symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of two independent delay parameters$ {\tau }_{1} $ and$ {\tau }_{2} $ . By analogy, in the third-cascaded HOM interferometer, there are six symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of three independent delay parameters$ {\tau }_{1} $ ,$ {\tau }_{2} $ and$ {\tau }_{3} $ . Therefore, multiple independent delay parameters can be measured simultaneously based on a cascaded HOM interferometer.In the experiment, the second-cascaded HOM interferometer based on frequency entangled photon source is built. The second-order quantum interferogram of the second-cascaded HOM interferometer is obtained by the coincidence measurement device. Two independent delay parameters $ {\tau }_{1} $ and$ {\tau }_{2} $ are measured simultaneously by recording the positions of two symmetrical dips, which are in good agreement with the theoretical results. At an averaging time of 3000 s, the measurement accuracy of two delay parameters$ {\tau }_{1} $ and$ {\tau }_{2} $ can reach 109 and 98 fs, respectively. These results lay a foundation for extending the applications of HOM interferometer in multi-parameter quantum systems.-
Keywords:
- Hong-Ou-Mandel interferometer /
- entangled photon pairs /
- multiple delay parameters /
- simultaneous measurement
[1] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar
[2] Ou Z Y, Hong C K, Mandel L 1987 Opt. Commun. 63 118Google Scholar
[3] Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726Google Scholar
[4] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar
[5] Carrasco S, Torres J P, Toener L 2004 Opt. Lett. 29 20Google Scholar
[6] Quan R A, Zhai Y W, Wang M M, Hou F Y, Wang S F, Xiang X, Liu T, Zhang S G, Dong R F 2016 Sci. Rep. 6 30453Google Scholar
[7] Ma X S, Zotter S, Kofler J, Ursin R, Jennewein T, Brukner C, Zeilinger A 2012 Nat. Phys. 8 6Google Scholar
[8] Quan R A, Dong R F, Zhai Y W, Hou F Y, Xiang X, Zhou H, Lü C L, Wang Z, You L X, Liu T, Zhang S G 2019 Opt. Lett. 44 3Google Scholar
[9] Schwarz L, van Enk S J 2011 Phys. Rev. Lett. 106 180501Google Scholar
[10] Jozsa R, Abrams D S, Dowling J P, Williams C P 2000 Phys. Rev. Lett. 85 2010Google Scholar
[11] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森 2017 68 120302Google Scholar
Li Y H, Xu Z H, Wang S, Xu L X, Zhou Z Y, Shi B S 2017 Acta Phys. Sin. 68 120302Google Scholar
[12] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar
[13] Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902Google Scholar
[14] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar
[15] Grice W P, Walmsley I A 1997 Phys. Rev. A 56 1627Google Scholar
[16] Kaltenbaek R, Blauensteiner B, Żukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502Google Scholar
[17] Branning D, Migdall A L, Sergienko A V 2000 Phys. Rev. A 62 063808Google Scholar
[18] Dauler E, Jaeger G, Muller A, Migdall A 1999 J. Res. Natl. Inst. Stand. Technol. 104 1Google Scholar
[19] Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 5Google Scholar
[20] Zhai Y W, Dong R F, Li B H, Quan R A, Wang M M, Hou F Y, Liu T, Zhang S G 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125502Google Scholar
[21] Yang Y, Xu L P, Giovannetti V 2019 Sci. Rep. 9 1Google Scholar
[22] Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar
[23] Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813Google Scholar
[24] Quan R A, Wang M M, Hou F Y, Tai Z Y, Dong R F 2015 Appl. Phys. B 118 431Google Scholar
-
图 2 基于频率纠缠光子对的多级级联HOM干涉仪的二阶量子干涉图谱 (a) 标准HOM干涉仪; (b) 二级级联HOM干涉仪; (c) 三级级联HOM干涉仪
Figure 2. The second-order quantum interferograms of multi-cascaded HOM interferometer based on frequency entangled photon pairs: (a) HOM interferometer; (b) the second-cascaded HOM interferometer; (c) the third-cascaded HOM interferometer.
图 3 基于频率纠缠光子对的二级级联HOM干涉仪实验装置图(HWP, 半波片; PPKTP, 周期极化磷酸氧钛钾晶体; DM, 分色镜; Lens, 透镜组; FC, 光纤耦合器; FPBS, 光纤偏振分束器; 50∶50 FBS, 50∶50光纤分束器; FPC, 光纤偏振控制器; MDL, 电动可调光学延迟线; ODL, 手动可调光学延迟线; SNSPD, 超导纳米线单光子探测器)
Figure 3. Experimental setup of the second-cascaded HOM interferometer based on frequency entangled photon pairs. HWP, half-wave plate; PPKTP, periodically poled KTP; DM, dichroic mirror; Lens, a set of lenses; FC, fiber connection; FPBS, fiber-based polarization beam splitter; 50∶50 FBS, 50∶50 fiber beam splitter; FPC, fiber polarization controller; MDL, motorized delay line; ODL, optical delay line; SNSPD, super-conductor nanowire single photon detector.
-
[1] Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar
[2] Ou Z Y, Hong C K, Mandel L 1987 Opt. Commun. 63 118Google Scholar
[3] Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726Google Scholar
[4] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar
[5] Carrasco S, Torres J P, Toener L 2004 Opt. Lett. 29 20Google Scholar
[6] Quan R A, Zhai Y W, Wang M M, Hou F Y, Wang S F, Xiang X, Liu T, Zhang S G, Dong R F 2016 Sci. Rep. 6 30453Google Scholar
[7] Ma X S, Zotter S, Kofler J, Ursin R, Jennewein T, Brukner C, Zeilinger A 2012 Nat. Phys. 8 6Google Scholar
[8] Quan R A, Dong R F, Zhai Y W, Hou F Y, Xiang X, Zhou H, Lü C L, Wang Z, You L X, Liu T, Zhang S G 2019 Opt. Lett. 44 3Google Scholar
[9] Schwarz L, van Enk S J 2011 Phys. Rev. Lett. 106 180501Google Scholar
[10] Jozsa R, Abrams D S, Dowling J P, Williams C P 2000 Phys. Rev. Lett. 85 2010Google Scholar
[11] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森 2017 68 120302Google Scholar
Li Y H, Xu Z H, Wang S, Xu L X, Zhou Z Y, Shi B S 2017 Acta Phys. Sin. 68 120302Google Scholar
[12] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar
[13] Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902Google Scholar
[14] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar
[15] Grice W P, Walmsley I A 1997 Phys. Rev. A 56 1627Google Scholar
[16] Kaltenbaek R, Blauensteiner B, Żukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502Google Scholar
[17] Branning D, Migdall A L, Sergienko A V 2000 Phys. Rev. A 62 063808Google Scholar
[18] Dauler E, Jaeger G, Muller A, Migdall A 1999 J. Res. Natl. Inst. Stand. Technol. 104 1Google Scholar
[19] Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 5Google Scholar
[20] Zhai Y W, Dong R F, Li B H, Quan R A, Wang M M, Hou F Y, Liu T, Zhang S G 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125502Google Scholar
[21] Yang Y, Xu L P, Giovannetti V 2019 Sci. Rep. 9 1Google Scholar
[22] Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar
[23] Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813Google Scholar
[24] Quan R A, Wang M M, Hou F Y, Tai Z Y, Dong R F 2015 Appl. Phys. B 118 431Google Scholar
Catalog
Metrics
- Abstract views: 5721
- PDF Downloads: 151
- Cited By: 0