Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relevance of the heralded efficiency of the heralded single-photon source to the heralded basis

Yang Hong-En Wei Lian-Fu

Citation:

Relevance of the heralded efficiency of the heralded single-photon source to the heralded basis

Yang Hong-En, Wei Lian-Fu
PDF
HTML
Get Citation
  • The method by measuring one photon of an entangled two-photon pair to simultaneously herald another photon as the single photon, is one of the important ways to prepare the desired single-photon source. However, achieving high herald efficiency is still an open problem. In this paper, with the polarization entangled photon pairs generated by the parametric down-conversion process in the I-type phase-matched BBO (β-BaB2O4) nonlinear crystal, we investigate how the herald efficiency of the single-photon along the ideal path depends on the selection of the heralded basis of the photon in the signal path. An extended Hanbury-Brown-Twiss experimental system is built with a fiber polarizing beam splitter and three single-photon detectors, to experimentally measure the herald efficiency of the heralded single-photon source. Our results show that with the present polarization entangled-photon system whose quality is relatively low, the herald efficiency with the $|+/-\rangle$ heralded basis is enhanced 4% compared with that with the $|H/V\rangle$ heralded basis.
      Corresponding author: Wei Lian-Fu, lfwei@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974290, U1330201).
    [1]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [2]

    Brunel C, Lounis B, Tamarat P, Orrit M 1999 Phys. Rev. Lett. 83 2722Google Scholar

    [3]

    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290Google Scholar

    [4]

    Soujaeff A, Nishioka T, Hasegawa T, Takeuchi S, Tsurumaru T, Sasaki K, Matsui M 2007 Opt. Express 15 726Google Scholar

    [5]

    Sanaka K, Jennewein T, Pan J W, Resch K, Zeilinger A 2004 Phys. Rev. Lett. 92 017902Google Scholar

    [6]

    Klyshko D N, Penin A N, Polkovnikov B F 1970 JETP Lett. 11 05

    [7]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [8]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

    [9]

    Jeffrey E, Peters N A, Kwiat P G 2004 New J. Phys. 6 100Google Scholar

    [10]

    Fasel S, Alibart O, Tanzilli S, Baldi P, Beveratos A, Gisin N, Zbindenet H 2004 New J. Phys. 6 163Google Scholar

    [11]

    Pittman T B, Jacobs B C, Franson J D 2005 Opt. Commun. 246 545Google Scholar

    [12]

    Ramelow S, Mech A, Giustina M, Gröblacher S, Wieczorek W, Beyer J, Lita A, Calkins B, Gerrits T, Nam S W, Zeilinger A, Ursin R 2013 Opt. Express 21 6707Google Scholar

    [13]

    Krapick S, Herrmann H, Quiring V, Brecht B, Suche H, Silberhorn Ch 2013 New J. Phys. 15 033010Google Scholar

    [14]

    Montaut N, Sansoni L, Meyer-Scott E, Ricken R, Quiring V, Herrmann H, Silberhorn C 2017 Phys. Rev. Appl. 8 024021Google Scholar

    [15]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209Google Scholar

    [16]

    Ou Z Y, Wang L J, Mandel L 1990 J. Opt. Soc. Am. B 7 211

    [17]

    郭伟杰, 樊代和, 韦联福 2013 中国科学: 物理学 力学 天文学 43 948

    Guo W J, Fan D H, Wei L F 2013 Sci. Sin.-Phys. Mech. Astron. 43 948

    [18]

    Wang Y, Fan D H, Guo W J, Wei L F 2015 Chin. Phys. B 24 084203Google Scholar

    [19]

    兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强 2017 66 120502Google Scholar

    Lan D D, Gao X M, Peng C S, Ji Y L, Liu X L, Li P, Guo Y Q 2017 Acta Phys. Sin. 66 120502Google Scholar

    [20]

    Kimble H J, Dagenais M, Mandel L 1997 Phys. Rev. Lett. 39 691

    [21]

    Genty G, Surakka M, Turunen J, Ari T 2010 Opt. Lett. 35 3057Google Scholar

    [22]

    Li G, Zhang T C, Li Y, Wang J 2005 Phys. Rev. A 71 023807Google Scholar

    [23]

    Thorn J J, Neel M S, Donato V W, Bergreen G S, Davies R E, Beck M 2004 Am. J. Phys. 72 1210Google Scholar

    [24]

    Beck M 2007 J. Opt. Soc. Am. B 24 2972Google Scholar

    [25]

    Brida G, Degiovanni I P, Genovese M, Migdall A, Piacentini F, Polyakov S V, Berchera I R 2011 Opt. Express 19 1484Google Scholar

  • 图 1  利用纠缠光子对制备宣布式单光子源的原理示意图 激光抽运非线性晶体使其发生参量下转换, 产生纠缠的信号光(s, 图中下面一路)和闲置光(i, 图中上面一路); 探测信号光子从而将其孪生的闲置光子“宣布”为单光子

    Figure 1.  Schematic diagram of the preparation of a heralded single photon source using entangled photons. The laser pumped nonlinear crystal causes parametric down-conversion to produce entangled signal light (s, the lower path in the figure) and idle light (i, the upper one in the figure); Detecting signal photons to “herald” the twinned photon into single photons.

    图 2  利用I类BBO非线性晶体产生纠缠光子对的原理简图 圆锥表示光场分布, 与上下光路的交叉点为光子信号的采集点, 所采集的光子偏振为$|HH\rangle$或者为$|VV\rangle$

    Figure 2.  Schematic diagram of generating entangled photon pairs using class I BBO nonlinear crystals. The cone represents the light field distribution, and the intersection with the upper and lower light paths is the collection point of the photon signal, and the acquired photon polarization is $|HH\rangle$ or $|VV\rangle$.

    图 3  纠缠光子对偏振关联测量原理图 透镜(Lens)之前的极化分束器(PBS)的作用是滤掉水平偏振的激光(取其反射光进入透镜, 这里省略了反射光路), BBO晶体之前的半波片(HWP)用于产生偏振叠加抽运光, BBO用于产生纠缠双光子, 半波片、滤波片(Filter)、PBS和探测器构成光子的偏振探测系统, 符合计数器记录并显示两个单光子探测器的符合信号

    Figure 3.  Schematic diagram of entangled photon pair polarization correlation measurement. The polarized beam splitter (PBS) before Lens is used to filter out horizontally polarized lasers, the half-wave plate (HWP) before the BBO crystal is used to generate polarized superimposed pump light, and BBO is used to generate entangled photon pairs. A half-wave plate, a filter, a PBS, and a detector constitute a photon polarization detection system, coincidence counter records and display the coincidence signals for two single photon detectors.

    图 4  纠缠光子偏振关联的实验测量结果

    Figure 4.  Experimental measurement results of the polarization correlations for entangled photon-pairs.

    图 5  HBT实验原理图 一束光通过50/50分束器后被均分为两路(其中一路经过延时$\tau$), 最后两路信号分别被两个探测器所探测, 其同时性由符合计数特性表征

    Figure 5.  Schematic diagram of the HBT experiment, wherein a laser beam is splitted, after a 50/50 beam splitter, into two paths; one of them is delayed by a duration $\tau$, then the signals of the two paths are detected by the two detectors, respectively. The simultaneity of the detected signals is characterized by the coincidence countings.

    图 6  不对信号光宣布而直接测量闲置光场二阶相干度的实验结果

    Figure 6.  The measured second-order coherence for the idle light field without being heralded by the signal light.

    图 7  宣布式单光子场的二阶关联函数实验测量光路图

    Figure 7.  Optical path system for measuring the heralded efficiency of the heralded single photons.

    图 8  宣布式单光子场二阶相干度测量结果

    Figure 8.  Measurement results of second-order coherence of the single photon field.

    表 1  不同延时的符合计数结果

    Table 1.  Coincidence results for different delays.

    延时/ns 0 5 10 15 20 25 30 35 40 45 50
    符合计数 7905 8043 6369 6379 6351 6349 6377 6328 6322 6339 6318
    DownLoad: CSV

    表 2  不同测量基下的三个单光子探测器的符合计数结果

    Table 2.  Coincidence results of three single-photon detectors under different measurement bases.

    符合通道 $N_{13}$ $N_{23}$ $N_{123}$
    $|H\rangle|H\rangle$ 583 607 111
    $|+\rangle|+\rangle$ 693 730 158
    DownLoad: CSV

    表 3  信号光不同偏振测量基下三个探测器的符合计数实验测量结果

    Table 3.  Coincidence countings of three single-photon detectors for different polarization measurements.

    信号光路
    偏振状态
    信号光路光子
    计数率
    闲置光场所处的
    偏振态
    符合计数
    $|H\rangle$ 6859 $|H\rangle$ 1142
    $|V\rangle$ 54
    $|V\rangle$ 6945 $|V\rangle$ 1137
    $|H\rangle$ 39
    $|+\rangle$ 7492 $|+\rangle$ 1416
    $|-\rangle$ 12
    $|-\rangle$ 6277 $|-\rangle$ 1178
    $|+\rangle$ 15
    DownLoad: CSV
    Baidu
  • [1]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E, Imamoglu A 2000 Science 290 2282Google Scholar

    [2]

    Brunel C, Lounis B, Tamarat P, Orrit M 1999 Phys. Rev. Lett. 83 2722Google Scholar

    [3]

    Kurtsiefer C, Mayer S, Zarda P, Weinfurter H 2000 Phys. Rev. Lett. 85 290Google Scholar

    [4]

    Soujaeff A, Nishioka T, Hasegawa T, Takeuchi S, Tsurumaru T, Sasaki K, Matsui M 2007 Opt. Express 15 726Google Scholar

    [5]

    Sanaka K, Jennewein T, Pan J W, Resch K, Zeilinger A 2004 Phys. Rev. Lett. 92 017902Google Scholar

    [6]

    Klyshko D N, Penin A N, Polkovnikov B F 1970 JETP Lett. 11 05

    [7]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337Google Scholar

    [8]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773Google Scholar

    [9]

    Jeffrey E, Peters N A, Kwiat P G 2004 New J. Phys. 6 100Google Scholar

    [10]

    Fasel S, Alibart O, Tanzilli S, Baldi P, Beveratos A, Gisin N, Zbindenet H 2004 New J. Phys. 6 163Google Scholar

    [11]

    Pittman T B, Jacobs B C, Franson J D 2005 Opt. Commun. 246 545Google Scholar

    [12]

    Ramelow S, Mech A, Giustina M, Gröblacher S, Wieczorek W, Beyer J, Lita A, Calkins B, Gerrits T, Nam S W, Zeilinger A, Ursin R 2013 Opt. Express 21 6707Google Scholar

    [13]

    Krapick S, Herrmann H, Quiring V, Brecht B, Suche H, Silberhorn Ch 2013 New J. Phys. 15 033010Google Scholar

    [14]

    Montaut N, Sansoni L, Meyer-Scott E, Ricken R, Quiring V, Herrmann H, Silberhorn C 2017 Phys. Rev. Appl. 8 024021Google Scholar

    [15]

    Cui L, Li X Y, Fan H Y, Yang L, Ma X X 2009 Chin. Phys. Lett. 26 044209Google Scholar

    [16]

    Ou Z Y, Wang L J, Mandel L 1990 J. Opt. Soc. Am. B 7 211

    [17]

    郭伟杰, 樊代和, 韦联福 2013 中国科学: 物理学 力学 天文学 43 948

    Guo W J, Fan D H, Wei L F 2013 Sci. Sin.-Phys. Mech. Astron. 43 948

    [18]

    Wang Y, Fan D H, Guo W J, Wei L F 2015 Chin. Phys. B 24 084203Google Scholar

    [19]

    兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强 2017 66 120502Google Scholar

    Lan D D, Gao X M, Peng C S, Ji Y L, Liu X L, Li P, Guo Y Q 2017 Acta Phys. Sin. 66 120502Google Scholar

    [20]

    Kimble H J, Dagenais M, Mandel L 1997 Phys. Rev. Lett. 39 691

    [21]

    Genty G, Surakka M, Turunen J, Ari T 2010 Opt. Lett. 35 3057Google Scholar

    [22]

    Li G, Zhang T C, Li Y, Wang J 2005 Phys. Rev. A 71 023807Google Scholar

    [23]

    Thorn J J, Neel M S, Donato V W, Bergreen G S, Davies R E, Beck M 2004 Am. J. Phys. 72 1210Google Scholar

    [24]

    Beck M 2007 J. Opt. Soc. Am. B 24 2972Google Scholar

    [25]

    Brida G, Degiovanni I P, Genovese M, Migdall A, Piacentini F, Polyakov S V, Berchera I R 2011 Opt. Express 19 1484Google Scholar

  • [1] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [3] Shang Xiang-Jun, Li Shu-Lun, Ma Ben, Chen Yao, He Xiao-Wu, Ni Hai-Qiao, Niu Zhi-Chuan. Optical fiber coupling of quantum dot single photon sources. Acta Physica Sinica, 2021, 70(8): 087801. doi: 10.7498/aps.70.20201605
    [4] Zhai Yi-Wei, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Cascaded Hong-Ou-Mandel interference of entangled photon pairs and its application in multiple delay parameters measurement. Acta Physica Sinica, 2021, 70(12): 120302. doi: 10.7498/aps.70.20210071
    [5] He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting. Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term. Acta Physica Sinica, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [6] Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang. Compression of correlation time of chirped biphotons by binary phase modulation. Acta Physica Sinica, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [7] Liu Yan, Li Jian-Jun, Gao Dong-Yang, Zhai Wen-Chao, Hu You-Bo, Guo Yuan-Yuan, Xia Mao-Peng, Zheng Xiao-Bing. Research on the time-correlation characterisrtic of correlated photon circles generated by the type-I spontaneous parametric down-conversion. Acta Physica Sinica, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [8] Xia Mao-Peng, Li Jian-Jun, Gao Dong-Yang, Hu You-Bo, Sheng Wen-Yang, Pang Wei-Wei, Zheng Xiao-Bing. Absolute calibration of an analog InSb detector based on multimode spatial correlation of correlated photons. Acta Physica Sinica, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [9] Yang Lei, Ma Xiao-Xin, Cui Liang, Guo Xue-Shi, Li Xiao-Ying. Fiber-based narrow-band single-photon source with high heralding efficiency. Acta Physica Sinica, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [10] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [11] Lu Zong-Gui, Liu Hong-Jun, Jing Feng, Zhao Wei, Wang Yi-Shan, Peng Zhi-Tao. Theoretical analysis of spectral properties of parametric fluorescence via spontaneous parametric down-conversion. Acta Physica Sinica, 2009, 58(7): 4689-4696. doi: 10.7498/aps.58.4689
    [12] Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs. Acta Physica Sinica, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [13] Cheng Qiu-Li, Xie Shuang-Yuan, Yang Ya-Ping. The influence of the field frequency modulation on quantum entanglement via two-photon process. Acta Physica Sinica, 2008, 57(11): 6968-6975. doi: 10.7498/aps.57.6968
    [14] Wang Shao-Kai, Ren Ji-Gang, Jin Xian-Min, Yang Bin, Yang Dong, Peng Cheng-Zhi, Jiang Shuo, Wang Xiang-Bin. The design of entangled source for free space quantum communications. Acta Physica Sinica, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [15] Liu Shao-Ding, Cheng Mu-Tian, Wang Xia, Wang Qu-Quan. The influence of spin relaxation on the entanglement of photon pairs emitted from degenerate exciton quantum dot system. Acta Physica Sinica, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [16] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [17] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [18] Zhang Guo-Feng, Jia Xin-Juan, Yan Qi-Wei, Liang Jiu-Qing. Influence of entanglement degree on squeezing and photon antibunching in the tw o-photon Jaynes-Cummings model. Acta Physica Sinica, 2003, 52(10): 2393-2398. doi: 10.7498/aps.52.2393
    [19] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [20] Sun Li-Qun, Zhang Yan-Peng, Liu Ya-Fang, Tang Tian-Tong, Yang Zhao-Jin, Xiang Shi-Ming. . Acta Physica Sinica, 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
Metrics
  • Abstract views:  9931
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2019
  • Accepted Date:  12 September 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回
Baidu
map