Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methode of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor

Wang Jian-Bo Qian Jin Liu Zhong-You Lu Zu-Liang Huang Lu Yang Yan Yin Cong Li Tong-Bao

Citation:

Methode of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor

Wang Jian-Bo, Qian Jin, Liu Zhong-You, Lu Zu-Liang, Huang Lu, Yang Yan, Yin Cong, Li Tong-Bao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The calculable capacitor is a classical and fundamental experimental apparatus in precision electromagnetic measurements. It is the alternating current (AC) impedance primary standard, and an important tool in measuring the fine structure constant. The calculable capacitor provides a way to directly link the capacitance unit to the mechanical unit of length. In the calculable capacitor, the displacement measurement of the guard electrode is an essential part, because the average value of the cross capacitances is directly proportional to the linear displacement of the moving guard electrode. In order to measure the displacement with a high accuracy of 10-9 or lower, a Fabry-Perot interferometer, whose cavity length is traceable to a stabilized laser by the phase sensitive detection technique, is employed. Considering that the Fabry-Perot interferometer is irradiated by the Gaussian laser beam, the effect of the phase shift of the Gaussian field, relative to the plane wave, should be carefully considered in the displacement measurement. The amplitude of the Gaussian laser beam disperses out of the region where it can be assumed to be plane-wave propagation, so its wavefronts bend and their spacing is different from that of the plane wave. As a result, the corresponding distance of an interference fringe from the coherent Gaussian laser beams is not strictly equal to /2, and it means that the displacement correction based on the phase shift of the Gaussian laser beam in the Fabry-Perot interferometer is inevitable. Therefore, the measured result should add or subtract the correction value to obtain the actual displacement of the interferometer. In order to determine the Gouy phase correction, an interferometer model based on the calculable capacitor is studied analytically and numerically. Using the free space propagation and lens transformation of the Gaussian beam field, the complex amplitude of the partial beam transmitted through the interferometer is obtained, and its phase versus the longitude propagation distance is analyzed. The amplitude and phase of the total transmitted beam, which is the coherent superposition of all the partial beams, are presented. Since the Fabry-Perot interferometer in the calculable capacitor is actively locked to a stabilized laser at two different cavity lengths, the phase of the transmitted beam at each cavity length is calculated individually. The phase difference between the two transmitted beams versus the longitude propagation distance is also analyzed numerically. The simulation result demonstrates that the minimum value of the displacement correction can be obtained by actively detecting the laser light at a distance of 560 mm from output mirror, when the Fabry-Perot interferometer moves from the cavity length of 111.3 mm to 316.3 mm, and it means that a displacement correction value of 0.7 nm, with a relative value of |L|/|L| = 3.410-9, should be added to the measured displacement of the guard electrode.
      Corresponding author: Qian Jin, qianjin@nim.ac.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project (Grant No. 2012YQ10022503), and the Special Scientific Research Fund of Quality Inspection of Public Welfare Profession of China (Grant No. 20150002).
    [1]

    Thompson A M, Lampard D G 1956 Nature 177 888

    [2]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [3]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [4]

    Cutkosky R D 1961 J. Res. Nat. Bur. Stand. 65A 147

    [5]

    Clothier W K 1965 Metrologia 1 36

    [6]

    Thompson A M 1959 Proceedings of the IEE - Part C:Monographs 104 271

    [7]

    Bachmair H, Funck T, Hanke R, Lang H 1995 IEEE Trans. Instrum. Meas. 44 440

    [8]

    Igarashi T, Kanno M, Koizumi Y, Haneda K 1970 IEEE Trans. Instrum. Meas. 19 297

    [9]

    Jeffery A M, Elmquist R E, Lee L H, Shields J Q, Dziuba R F 1997 IEEE Trans. Instrum. Meas. 46 264

    [10]

    Jones K, Corney A C 1987 Metrologia 24 1

    [11]

    Small G W 1996 Conference on Precision Electromagnetic MeasurementsLaguna Beach, California, USA, June 10-12, 1999 p8

    [12]

    Cross Capacitor Group of National Institute of Metrology 1980 Acta Metrol. Sin 1 16 (in Chinese) [中国计量科学研究院计算电容组 1980 计量学报 1 16]

    [13]

    Zhang Z, Lu Z 1982 Acta Metrol. Sin. 3 250

    [14]

    Lu Z, Huang L, Yang Y, Zhao J, Qian J, Lu W, Liu Z, Zhang Z, Liu X, Wang J, Wang W, Lu Y, He Q 2015 IEEE Trans. Instrum. Meas. 64 1496

    [15]

    Shields J Q, Dziuba R F, Layer H P 1989 IEEE Trans. Instrum. Meas. 38 249

    [16]

    Lawall J R 2005 J. Opt. Soc. Am. A 22 2786

    [17]

    Fletcher N, Goebel R, Robertsson L, Stock M 2004 Conference on Precision Electromagnetic Measurements, London, England, June 27-July 2, 2004 p485

    [18]

    Andreas B, Ferroglio L, Fujii K, Kuramoto N, Mana G 2011 Metrologia 48 S104

    [19]

    Kogelnik H, Li T 1966 Appl. Opt. 5 1550

    [20]

    Boyd R W 1980 J. Opt. Soc. Am. 70 877

    [21]

    Feng S M, Winful H G 2001 Opt. Lett. 26 485

    [22]

    Martelli P, Tacca M, Gatto A, Moneta G, Martinelli M 2010 Opt. Exp. 18 7108

    [23]

    Tyc T 2012 Opt. Lett. 37 924

    [24]

    Wu X F, Deng D M, Guo Q 2011 Chin. Phys. B 20 84201

    [25]

    Zhou Y H, Jiang H B, Gong Q H 2006 Chin. Phys. Lett. 23 110

    [26]

    Lennart R 2007 Metrologia 44 35

    [27]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photon. 3 351

    [28]

    Small G W, Fiander J R 2011 IEEE Trans. Instrum. Meas. 60 2489

    [29]

    Siegman A E 1986 Lasers (Palo Alto: University Science Books) pp637-667

    [30]

    Lu Z L, Huang L, Yang Y, Zhao J T, Qian J, Lu W J, Liu Z Y, Zhang Z H, Liu X Y, Wang J B, Wang W, He X B 2014 Acta Metrol. Sin 35 521 (in Chinese) [陆祖良, 黄璐, 杨雁, 赵建亭, 钱进, 陆文骏, 刘忠有, 张钟华, 刘秀英, 王建波, 王维, 何小兵 2014 计量学报 35 521]

  • [1]

    Thompson A M, Lampard D G 1956 Nature 177 888

    [2]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [3]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [4]

    Cutkosky R D 1961 J. Res. Nat. Bur. Stand. 65A 147

    [5]

    Clothier W K 1965 Metrologia 1 36

    [6]

    Thompson A M 1959 Proceedings of the IEE - Part C:Monographs 104 271

    [7]

    Bachmair H, Funck T, Hanke R, Lang H 1995 IEEE Trans. Instrum. Meas. 44 440

    [8]

    Igarashi T, Kanno M, Koizumi Y, Haneda K 1970 IEEE Trans. Instrum. Meas. 19 297

    [9]

    Jeffery A M, Elmquist R E, Lee L H, Shields J Q, Dziuba R F 1997 IEEE Trans. Instrum. Meas. 46 264

    [10]

    Jones K, Corney A C 1987 Metrologia 24 1

    [11]

    Small G W 1996 Conference on Precision Electromagnetic MeasurementsLaguna Beach, California, USA, June 10-12, 1999 p8

    [12]

    Cross Capacitor Group of National Institute of Metrology 1980 Acta Metrol. Sin 1 16 (in Chinese) [中国计量科学研究院计算电容组 1980 计量学报 1 16]

    [13]

    Zhang Z, Lu Z 1982 Acta Metrol. Sin. 3 250

    [14]

    Lu Z, Huang L, Yang Y, Zhao J, Qian J, Lu W, Liu Z, Zhang Z, Liu X, Wang J, Wang W, Lu Y, He Q 2015 IEEE Trans. Instrum. Meas. 64 1496

    [15]

    Shields J Q, Dziuba R F, Layer H P 1989 IEEE Trans. Instrum. Meas. 38 249

    [16]

    Lawall J R 2005 J. Opt. Soc. Am. A 22 2786

    [17]

    Fletcher N, Goebel R, Robertsson L, Stock M 2004 Conference on Precision Electromagnetic Measurements, London, England, June 27-July 2, 2004 p485

    [18]

    Andreas B, Ferroglio L, Fujii K, Kuramoto N, Mana G 2011 Metrologia 48 S104

    [19]

    Kogelnik H, Li T 1966 Appl. Opt. 5 1550

    [20]

    Boyd R W 1980 J. Opt. Soc. Am. 70 877

    [21]

    Feng S M, Winful H G 2001 Opt. Lett. 26 485

    [22]

    Martelli P, Tacca M, Gatto A, Moneta G, Martinelli M 2010 Opt. Exp. 18 7108

    [23]

    Tyc T 2012 Opt. Lett. 37 924

    [24]

    Wu X F, Deng D M, Guo Q 2011 Chin. Phys. B 20 84201

    [25]

    Zhou Y H, Jiang H B, Gong Q H 2006 Chin. Phys. Lett. 23 110

    [26]

    Lennart R 2007 Metrologia 44 35

    [27]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photon. 3 351

    [28]

    Small G W, Fiander J R 2011 IEEE Trans. Instrum. Meas. 60 2489

    [29]

    Siegman A E 1986 Lasers (Palo Alto: University Science Books) pp637-667

    [30]

    Lu Z L, Huang L, Yang Y, Zhao J T, Qian J, Lu W J, Liu Z Y, Zhang Z H, Liu X Y, Wang J B, Wang W, He X B 2014 Acta Metrol. Sin 35 521 (in Chinese) [陆祖良, 黄璐, 杨雁, 赵建亭, 钱进, 陆文骏, 刘忠有, 张钟华, 刘秀英, 王建波, 王维, 何小兵 2014 计量学报 35 521]

  • [1] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [2] Wang Jia, Liu Rong-Ming, Wang Jia-Chao, Wu Shen-Jiang. Measurement of three-dimensional displacements by radial shearing interferometer. Acta Physica Sinica, 2021, 70(7): 070701. doi: 10.7498/aps.70.20201451
    [3] Wang Shuai, Sui Yong-Xing, Meng Xiang-Guo. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer. Acta Physica Sinica, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [4] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] Li Shi-Yu,  Tian Jian-Feng,  Yang Chen,  Zuo Guan-Hua,  Zhang Yu-Chi,  Zhang Tian-Cai. Effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Physica Sinica, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [6] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [7] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [8] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [9] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [10] Wang Jing-Jing, He Bo, Yu Bo, Liu Yan, Wang Xiao-Bo, Xiao Lian-Tuan, Jia Suo-Tang. Fabry-Perot cavity locked by using single photon modulation. Acta Physica Sinica, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [11] Zhou Ke-Yu, Ye Hui, Zhen Hong-Yu, Yin Yi, Shen Wei-Dong. Study of tunable Fabry-Perot filter based on piezoelectric polymer film. Acta Physica Sinica, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [12] Liu Ning, Zhang Chun-Min, Wang Jin-Chan, Mu Ting-Kui. The theoretical measurement error of a novel static polarization wind imaging interferometer. Acta Physica Sinica, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [13] Wang Zheng, Zhao Xin-Jie, He Ming, Zhou Tie-Ge, Yue Hong-Wei, Yan Shao-Lin. Simulations of impedance matching and phase locking of Josephson junction arrays embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [14] Bu Zhi-Chao, Zhang Chun-Min, Zhao Bao-Chang, Zhu Hua-Chun. Analysis and calculation of the modulation depth of the Michelson interferometer with wide field, chromatic compensation and thermal compensation. Acta Physica Sinica, 2009, 58(4): 2415-2422. doi: 10.7498/aps.58.2415
    [15] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [16] Wang Yan-Hua, Ren Wen-Hua, Liu Yan, Tan Zhong-Wei, Jian Shui-Sheng. Phase-modified coupled mode theory for calculation of fiber Bragg grating Fabry-Perot cavity transmission spectrum. Acta Physica Sinica, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [17] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [18] ZHONG QUAN-DE. OPTICAL SWITCHING AND BIST ABILITY IN A FABRY-PEROT INTERFEROMETER CONTAINING PLASMA. Acta Physica Sinica, 1985, 34(2): 182-187. doi: 10.7498/aps.34.182
    [19] LI YONG-GUI, ZHANG HONG-JUN, YANG JUN-HUI, GAO CUN-XIU. BISTABLE CHARACTERISTICS OF HYBRID NONLINEAR FABRY-PEROT OPTICAL BISTABILITY. Acta Physica Sinica, 1982, 31(4): 446-459. doi: 10.7498/aps.31.446
    [20] T. F. HU, C. WEI, C. S. CHANG. GE IR INTERFEREMETER. Acta Physica Sinica, 1964, 20(11): 1164-1171. doi: 10.7498/aps.20.1164
Metrics
  • Abstract views:  6437
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2015
  • Accepted Date:  28 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map