搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频率纠缠双光子和级联Hong-Ou-Mandel干涉的量子陀螺仪理论研究

翟艺伟 潘展鹏 薛胜春

引用本文:
Citation:

基于频率纠缠双光子和级联Hong-Ou-Mandel干涉的量子陀螺仪理论研究

翟艺伟, 潘展鹏, 薛胜春

Research on quantum gyroscope based on frequency entangled biphoton and cascaded Hong-Ou-Mandel interference

ZHAI Yiwei, PAN Zhanpeng, XUE Shengchun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高时延分辨率的Hong-Ou-Mandel(HOM)干涉仪一直是量子精密测量领域的研究热点,将其应用到量子陀螺仪中可以实现突破经典理论极限的角速度测量。本文提出了基于频率纠缠双光子和级联HOM干涉仪的量子陀螺仪方案。利用信号光和闲置光之间由于旋转存在的Sagnac效应,将三轴角速度分别引入到级联HOM干涉仪中的对应测量臂,利用级联HOM干涉图谱中凹陷位置与多个独立时延差之间的对应关系,结合干涉可见度与量子Fisher信息理论,得到三个独立时延差(τ123)的最大量子 Fisher 信息分别为( 2, 0.1, 0.006)。通过引入测量不确定度, 得出时延值测量精度可以突破散粒噪声极限, 并结合时延差与旋转角速度的关系, 可实现三轴角速度的测量,且测量精度可以超越经典光学陀螺仪, 方案可为后续量子陀螺仪在全球导航传感领域的进一步应用提供理论支持。
    The optical gyroscope, which measures the attitude information of spatial carriers, has emerged as a research hotspot in inertial navigation system. Real-time measurement of rotation angular velocity is crucial for obtaining accurate attitude information. However, the measurement precision of traditional optical gyroscope is limited by the short noise limit (SNL), which restricts its further application. Existing research indicates the need to employ quantum technology to address the measurement limitations of traditional optical gyroscopes. A triaxial rotation angular velocity measurement scheme based on frequency entangled biphoton and cascaded Hong-Ou-Mandel (HOM) interference is proposed. By leveraging the Sagnac effect induced by the rotation between signal and idler photons, the triaxial angular velocity is introduced into the corresponding measurement arm of a cascaded HOM interferometer. A coincidence measurement device is used to obtain the cascaded HOM interferogram, and the relationship between the positions of symmetric dips and the three independent time delay differences is analyzed. The characteristic parameters of HOM interferogram, including a half-height full width (FWHM) of 0.3 ps and visibilities of 1, 0.25 and 0.06, respectively, are obtained. According to quantum Fisher information theory, the maximum quantum Fisher information of the three independent time delay differences (τ123) is calculated as 1, 0.1, and 0.006, respectively. Furthermore, by incorporating measurement uncertainty, it is demonstrated that the precision of the time delay measurement can exceed the SNL. Combined with the relationship between time delay and angular velocity, the results show that the angularvelocity measurement precision exceeds that of classical optical gyroscopes. Therefore, this scheme provides a theoretical foundation for the further application of quantum gyroscopes in global navigation sensing and precision measurement systems.
  • [1]

    Toland J R E, Search C P 2013 Appl. Phys. B 114 333

    [2]

    Aghaie K Z, Digonnet M J F 2015 J. Opt. Soc. Am. B 32 339

    [3]

    Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203(in Chinese)[陈坤,陈树新,吴德伟,杨春燕,吴昊 2016 65 054203]

    [4]

    Lefèvre H C 2014 C. R. Physique 15 851

    [5]

    Sultana J 2014 Gen. Relat. Gravti.46 1710

    [6]

    Courtney T L, Park S D, Hill R J, Cho B, Jonas D M 2014 Opt. Lett. 39 513

    [7]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417

    [8]

    Dowling J P 2008 Contemp. Phys. 49 125

    [9]

    Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507

    [10]

    Fink M, Rodriguez-Aramendia A, Handsteiner J, Ziarkash A, Steinlechner F, Scheidl T, Fuentes I, Pienaar J, Ralph T C, Ursin R 2016 Nat. Commun. 8 15304

    [11]

    Kevin A, O'Donnell 2011 Phys. Rev. Lett. 106 063601

    [12]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241

    [13]

    Kolkiran A, Agarwal G S 2007 Opt. Express 15 6798

    [14]

    Fink M, Steinlechner F, Handsteiner J, Dowling J P, Scheidl T, Ursin R 2019 New J. Phys. 21 053010

    [15]

    Silvestri R, Yu H C, Stromeberg T, Hilweg C, Peterson R W, Walther P 2024 Sci. Adv. 10 0215

    [16]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) pp271–290

    [17]

    Lyons A, Knee G C, Bolduc E, Thomas R, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 9416

    [18]

    Chen Y Y, Fink M, Steinlechner F, Torres J P, Ursin R 2019 npj Quantum Inform. 5

    [19]

    Valencia A, Scarcelli G, Shih Y H 2004Appl. Phys. Lett. 85 2655

    [20]

    Xu Y K, Sun S H, Zeng Y Y, Yang J G, Sheng W D, Liu W T 2023 Acta Phys. Sin. 72 214207 (in Chinese)[徐耀坤,孙仕海,曾瑶源,杨俊刚,盛卫东,刘伟涛2023 72 214207]

    [21]

    Luo Y Z, Ma L J, Sun M S, Wu S R, Qiu L H, Wang H, Wang Q 2024 Acta Phys. Sin. 73 240302 (in Chinese)[罗一振,马洛嘉,孙铭烁,吴思睿,邱丽华,王禾,王琴 2024 73 240302]

    [22]

    Liu R, Kong L J, Wang Z X, Si Y, Qi W R, Huang S Y, Tu C H, Li Y N, Wang H T 2018 Chin. Phys. Lett. 35 090303

    [23]

    Ma L J, Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2025 Chin. Phys. B 34 010301

    [24]

    Gao W L, Xu L P, Zhang H, Yan B, Li P X, Hu G T 2023 Chin. Phys. B 32 050304

    [25]

    Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810

    [26]

    Post E J 1967 Rev. Mod. Phys. 39 475

    [27]

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302 (in Chinese)[翟艺伟,董瑞芳,权润爱,项晓,刘涛,张首刚2021

    [28]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [29]

    70 120302]

    [30]

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)[任志红,李岩,李艳娜,李卫东 2019 68 040601]

    [31]

    Zwierz M, Pérez-Delgado C A, Kok P 2010 Phys. Rev. Lett. 105 180402

    [32]

    Giovannetti V, Lloyd S, Maccone L, 2006 Phys. Rev. Lett. 96 010401

    [33]

    Guo Y, Yang Z X, Zeng Z Q, Ding C L, Shimizu R, Jin R B 2023 Opt. Express 31 32849

    [34]

    Kok P, Dunningham J, Ralph J F 2017 Phys. Rev. A 95 012326

  • [1] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架.  , doi: 10.7498/aps.72.20231242
    [2] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用.  , doi: 10.7498/aps.72.20230283
    [3] 周寅利, 贾雨棽, 张星, 张建伟, 刘占超, 宁永强, 王立军. 795 nm高温高功率垂直腔面发射激光器及原子陀螺仪应用.  , doi: 10.7498/aps.71.20212422
    [4] 田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强. 强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉.  , doi: 10.7498/aps.71.20211783
    [5] 翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 纠缠光子对的级联Hong-Ou-Mandel干涉研究及其在多时延参数测量中的应用.  , doi: 10.7498/aps.70.20210071
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散.  , doi: 10.7498/aps.68.20190217
    [7] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , doi: 10.7498/aps.68.20181837
    [8] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉.  , doi: 10.7498/aps.66.120302
    [9] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , doi: 10.7498/aps.64.207304
    [10] 贺泽龙, 白继元, 李鹏, 吕天全. T型双量子点分子Aharonov-Bohm干涉仪的电输运.  , doi: 10.7498/aps.63.227304
    [11] 白继元, 贺泽龙, 杨守斌. 平行耦合双量子点分子A-B干涉仪的电荷及其自旋输运.  , doi: 10.7498/aps.63.017303
    [12] 张羽, 权润爱, 白云, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 超短脉冲抽运下频率一致纠缠光源量子特性实验研究.  , doi: 10.7498/aps.62.144206
    [13] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制.  , doi: 10.7498/aps.60.113201
    [14] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉.  , doi: 10.7498/aps.59.1786
    [15] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场.  , doi: 10.7498/aps.57.3514
    [16] 成秋丽, 谢双媛, 羊亚平. 频率变化的光场对双光子过程中量子纠缠的调控.  , doi: 10.7498/aps.57.6968
    [17] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对.  , doi: 10.7498/aps.54.736
    [18] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频.  , doi: 10.7498/aps.54.149
    [19] 汪志诚. 双光子激光器的量子理论.  , doi: 10.7498/aps.40.1259-2
    [20] 李孝申, 刘正东, 龚昌德. 级联双光子过程中的压缩现象.  , doi: 10.7498/aps.36.1652
计量
  • 文章访问数:  145
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-25

/

返回文章
返回
Baidu
map