-
高时延分辨率的Hong-Ou-Mandel(HOM)干涉仪一直是量子精密测量领域的研究热点,将其应用到量子陀螺仪中可以实现突破经典理论极限的角速度测量。本文提出了基于频率纠缠双光子和级联HOM干涉仪的量子陀螺仪方案。利用信号光和闲置光之间由于旋转存在的Sagnac效应,将三轴角速度分别引入到级联HOM干涉仪中的对应测量臂,利用级联HOM干涉图谱中凹陷位置与多个独立时延差之间的对应关系,结合干涉可见度与量子Fisher信息理论,得到三个独立时延差(τ1,τ2,τ3)的最大量子 Fisher 信息分别为( 2, 0.1, 0.006)。通过引入测量不确定度, 得出时延值测量精度可以突破散粒噪声极限, 并结合时延差与旋转角速度的关系, 可实现三轴角速度的测量,且测量精度可以超越经典光学陀螺仪, 方案可为后续量子陀螺仪在全球导航传感领域的进一步应用提供理论支持。
-
关键词:
- 级联Hong-Ou-Mandel干涉 /
- 频率纠缠双光子 /
- 量子陀螺仪
The optical gyroscope, which measures the attitude information of spatial carriers, has emerged as a research hotspot in inertial navigation system. Real-time measurement of rotation angular velocity is crucial for obtaining accurate attitude information. However, the measurement precision of traditional optical gyroscope is limited by the short noise limit (SNL), which restricts its further application. Existing research indicates the need to employ quantum technology to address the measurement limitations of traditional optical gyroscopes. A triaxial rotation angular velocity measurement scheme based on frequency entangled biphoton and cascaded Hong-Ou-Mandel (HOM) interference is proposed. By leveraging the Sagnac effect induced by the rotation between signal and idler photons, the triaxial angular velocity is introduced into the corresponding measurement arm of a cascaded HOM interferometer. A coincidence measurement device is used to obtain the cascaded HOM interferogram, and the relationship between the positions of symmetric dips and the three independent time delay differences is analyzed. The characteristic parameters of HOM interferogram, including a half-height full width (FWHM) of 0.3 ps and visibilities of 1, 0.25 and 0.06, respectively, are obtained. According to quantum Fisher information theory, the maximum quantum Fisher information of the three independent time delay differences (τ1,τ2,τ3) is calculated as 1, 0.1, and 0.006, respectively. Furthermore, by incorporating measurement uncertainty, it is demonstrated that the precision of the time delay measurement can exceed the SNL. Combined with the relationship between time delay and angular velocity, the results show that the angularvelocity measurement precision exceeds that of classical optical gyroscopes. Therefore, this scheme provides a theoretical foundation for the further application of quantum gyroscopes in global navigation sensing and precision measurement systems. -
[1] Toland J R E, Search C P 2013 Appl. Phys. B 114 333
[2] Aghaie K Z, Digonnet M J F 2015 J. Opt. Soc. Am. B 32 339
[3] Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203(in Chinese)[陈坤,陈树新,吴德伟,杨春燕,吴昊 2016 65 054203]
[4] Lefèvre H C 2014 C. R. Physique 15 851
[5] Sultana J 2014 Gen. Relat. Gravti.46 1710
[6] Courtney T L, Park S D, Hill R J, Cho B, Jonas D M 2014 Opt. Lett. 39 513
[7] Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417
[8] Dowling J P 2008 Contemp. Phys. 49 125
[9] Kura N, Ueda M 2020 Phys. Rev. Lett. 124 010507
[10] Fink M, Rodriguez-Aramendia A, Handsteiner J, Ziarkash A, Steinlechner F, Scheidl T, Fuentes I, Pienaar J, Ralph T C, Ursin R 2016 Nat. Commun. 8 15304
[11] Kevin A, O'Donnell 2011 Phys. Rev. Lett. 106 063601
[12] Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241
[13] Kolkiran A, Agarwal G S 2007 Opt. Express 15 6798
[14] Fink M, Steinlechner F, Handsteiner J, Dowling J P, Scheidl T, Ursin R 2019 New J. Phys. 21 053010
[15] Silvestri R, Yu H C, Stromeberg T, Hilweg C, Peterson R W, Walther P 2024 Sci. Adv. 10 0215
[16] Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge University Press) pp271–290
[17] Lyons A, Knee G C, Bolduc E, Thomas R, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 9416
[18] Chen Y Y, Fink M, Steinlechner F, Torres J P, Ursin R 2019 npj Quantum Inform. 5
[19] Valencia A, Scarcelli G, Shih Y H 2004Appl. Phys. Lett. 85 2655
[20] Xu Y K, Sun S H, Zeng Y Y, Yang J G, Sheng W D, Liu W T 2023 Acta Phys. Sin. 72 214207 (in Chinese)[徐耀坤,孙仕海,曾瑶源,杨俊刚,盛卫东,刘伟涛2023 72 214207]
[21] Luo Y Z, Ma L J, Sun M S, Wu S R, Qiu L H, Wang H, Wang Q 2024 Acta Phys. Sin. 73 240302 (in Chinese)[罗一振,马洛嘉,孙铭烁,吴思睿,邱丽华,王禾,王琴 2024 73 240302]
[22] Liu R, Kong L J, Wang Z X, Si Y, Qi W R, Huang S Y, Tu C H, Li Y N, Wang H T 2018 Chin. Phys. Lett. 35 090303
[23] Ma L J, Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2025 Chin. Phys. B 34 010301
[24] Gao W L, Xu L P, Zhang H, Yan B, Li P X, Hu G T 2023 Chin. Phys. B 32 050304
[25] Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810
[26] Post E J 1967 Rev. Mod. Phys. 39 475
[27] Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302 (in Chinese)[翟艺伟,董瑞芳,权润爱,项晓,刘涛,张首刚2021
[28] Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439
[29] 70 120302]
[30] Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)[任志红,李岩,李艳娜,李卫东 2019 68 040601]
[31] Zwierz M, Pérez-Delgado C A, Kok P 2010 Phys. Rev. Lett. 105 180402
[32] Giovannetti V, Lloyd S, Maccone L, 2006 Phys. Rev. Lett. 96 010401
[33] Guo Y, Yang Z X, Zeng Z Q, Ding C L, Shimizu R, Jin R B 2023 Opt. Express 31 32849
[34] Kok P, Dunningham J, Ralph J F 2017 Phys. Rev. A 95 012326
计量
- 文章访问数: 145
- PDF下载量: 5
- 被引次数: 0