Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomization mechanism and powder morphology in laminar flow gas atomization

Xu Jin-Xin Chen Chao-Yue Shen Lu-Yu Xuan Wei-Dong Li Xing-Gang Shuai San-San Li Xia Hu Tao Li Chuan-Jun Yu Jian-Bo Wang Jiang Ren Zhong-Ming

Citation:

Atomization mechanism and powder morphology in laminar flow gas atomization

Xu Jin-Xin, Chen Chao-Yue, Shen Lu-Yu, Xuan Wei-Dong, Li Xing-Gang, Shuai San-San, Li Xia, Hu Tao, Li Chuan-Jun, Yu Jian-Bo, Wang Jiang, Ren Zhong-Ming
PDF
HTML
Get Citation
  • Metal powders prepared by laminar flow gas atomization have the advantages of small particle size and narrow particle size distribution. At present, the research on laminar flow gas atomization mainly focuses on the influence of process parameters on atomization and powder characteristics, but the atomization mechanism of laminar flow gas atomization is still not clear. In this work, the atomization gas flow, primary and secondary breakup mechanism, and particle morphology of the laminar flow gas atomization process are systematically investigated through numerical simulation and experimental analysis. The characteristics of single-phase atomization gas flow through the De Laval nozzle are studied using the standard k-ε turbulence model. The flow field structure shows a “necklace”-like structure with an expansion wave cluster of oblique shock. The primary and secondary atomization mechanism are investigated using the coupled level-set and volume-of-fluid model, which is validated by solidified fragments and powders after the atomization experiment, and results of the numerical simulation also provide some important advices for the application and specific process of laminar gas atomization technology. The studies indicate that the melts at the periphery of the liquid column are mainly peeled off by filaments or ligaments, which exhibits the small dimension and pressurized melt atomization characteristics. The secondary atomization is mainly based on the disintegration of spherical droplets in the mode of Rayleigh-Taylor instability deformation and sheet-thinning breakup. The simulation results also show that increasing the gas pressure and melt superheat can effectively reduce the probability of irregular powders to occur. The AlSi10Mg powders are obtained under a pressure of 2.0 MPa in the experiment on gas atomization, and the properties of the powders are analyzed. The results show that the powders have good sphericity and flowability, and the proportion of hollow powders is very low. In addition, the mean particle size of the AlSi10Mg powders is 54.3 μm, and the yield of fine powders reaches 48.7%, which is greatly improved compared with the traditional gas atomization processes. Moreover, about 90% of the powders have particle sizes in a range of 30–100 μm, which indicates that a narrow particle size distribution can be obtained by the laminar gas atomization technology.
      Corresponding author: Chen Chao-Yue, cchen1@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1106400), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52001191), the National Science and Technology Major Project “Aeroengine and Gas Turbine”, China (Grant No. 2017VII00080102), the Shanghai Science and Technology Sailing Program for Young Talents, China (Grant No. 19YF1415900), the Shanghai Rising-Star Program for Young Scientists, China (Grant No. 20QA1403800), and the Shanghai Science and Technology Committee, China (Grant No. 19DZ1100704)
    [1]

    Chen C Y, Xie Y C, Yan X C, Yin S, Fukanuma H, Huang R Z, Zhao R X, Wang J, Ren Z M, Liu M, Liao H L 2019 Addit. Manuf. 27 595Google Scholar

    [2]

    Frazier W E 2014 J. Mater. Eng. Perform. 23 1917Google Scholar

    [3]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [4]

    Jia W M, Chen S Y, Wei M W, Liang J, Liu C S, Li J G 2019 Powder Metall. 62 30Google Scholar

    [5]

    Gerling R, Schimansky F P, Wegmann G 2010 Adv. Eng. Mater. 3 387Google Scholar

    [6]

    Liu M J, Zhang K J, Zhang Q, Zhang M, Yang G J, Li C X, Li C J 2019 Appl. Surf. Sci. 471 950Google Scholar

    [7]

    Balbaa M A, Ghasemi A, Fereiduni E, Elbestawi M A, Jadhav S D, Kruth J P 2020 Addit. Manuf. 10163Google Scholar

    [8]

    Baitimerov R, Lykov P, Zherebtsov D, Radionova L, Shultc A, Prashanth K G 2018 Materials (Basel) 11 742Google Scholar

    [9]

    Maskery I, Aboulkhair N T, Corfield M R, Tuck C, Clare A T, Leach R K, Wildman R D, Ashcroft I A, Hague R J M 2016 Mater. Charact. 111 193Google Scholar

    [10]

    Henein H, Uhlenwinkel V, Fritsching U 2017 Metal Sprays and Spray Deposition (Cham: Springer)pp 49−70

    [11]

    Wei M W, Chen S Y, Sun M, Liang J, Liu C S, Wang M 2020 Powder Technol. 367 724Google Scholar

    [12]

    Wei M W, Chen S Y, Liang J, Liu C S 2017 Vacuum 143 185

    [13]

    Park J M, Na T W, Park H K, Yang S M, Kang J W, Lee T W 2019 Mater. Lett. 243 5Google Scholar

    [14]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1Google Scholar

    [15]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75Google Scholar

    [16]

    Planche M P, Khatim O, Dembinski L, Bailly Y, Coddet C 2013 Mater. Chem. Phys. 137 681Google Scholar

    [17]

    Schulz G 1996 Met. Powder Rep. 51 30Google Scholar

    [18]

    Stobik M 2000 Adv. Eng. Mater. 2 547

    [19]

    Ahmed M, Pasha M, Nan W G, Ghadiri M 2020 Powder Technol. 367 671Google Scholar

    [20]

    Yu S S, Zhang P C, Qiu K H, Zhang W T, Li J F, Yao S, Zhou D Y, Yao N N, Li J C 2018 Ferroelectrics 530 25Google Scholar

    [21]

    Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C 2009 Powder Technol. 190 79Google Scholar

    [22]

    Khatim O, Planche M P, Dembinski L, Bailly Y, Coddet C 2010 Surf. Coat. Technol. 205 1171Google Scholar

    [23]

    Kaiser R, Li C G, Yang S S, Lee D G 2018 Adv. Powder Technol. 29 623Google Scholar

    [24]

    Mi J, Figliola R S, Anderson I E 1997 Metall. Mater. Trans. B 28 935Google Scholar

    [25]

    Ting J, Anderson I E 2004 Mater. Sci. Eng. A 379 264Google Scholar

    [26]

    Xiao F, Dianat M, McGuirk J J 2014 Atomization Sprays 24 281Google Scholar

    [27]

    夏敏, 汪鹏, 张晓虎, 葛昌纯 2018 67 170201Google Scholar

    Xia M, Wang P, Zhang X H, Ge C C 2018 Acta Phys. Sin. 67 170201Google Scholar

    [28]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [29]

    Shao C X, Luo K, Yang J S, Chen S, Fan J R 2015 Chin. J. Chem. Eng. 23 597Google Scholar

    [30]

    Rabin B H, Swank W D, Wright R N 2013 Nucl. Eng. Des. 262 72Google Scholar

    [31]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623Google Scholar

    [32]

    Yang Q, Liu Y T, Liu J, Wang L, Chen Z, Wang M L, Zhong S Y, Wu Y, Wang H W 2019 Mater. Des. 182 108045Google Scholar

    [33]

    Sarkar S, Sivaprasad P V, Bakshi S 2016 Atomization Sprays 26 23Google Scholar

    [34]

    Markus S, Fritsching U 2006 Int. J. Powder Metall. 42 23

    [35]

    Strotos G, Malgarinos I, Nikolopoulos N, Gavaises M 2016 Int. J. Multiphase Flow 85 96Google Scholar

    [36]

    Su Y H, Tsao C Y A 1997 Metall. Mater. Trans. B 28 1249Google Scholar

    [37]

    Guildenbecher D R, Lopez R C, Sojka P E 2009 Exp. Fluids 46 371Google Scholar

    [38]

    Guildenbecher D R, Lopez R C, Sojka P E 2011 Handbook of Atomization and Sprays: Theory and Applications (Boston: Springer US) pp145−156

    [39]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [40]

    Ashgriz N, Li X, Sarchami A 2011 Handbook of Atomization and Sprays: Instability of Liquid Sheets (Boston: Springer US) pp75−95

    [41]

    Chuech S G 2006 Int. J. Numer. Methods Fluids 50 1461Google Scholar

    [42]

    Dai Z, Faeth G M 2001 Int. J. Multiphase Flow 27 217Google Scholar

    [43]

    Yang W, Jia M, Sun K, Wang T Y 2016 Fuel 174 25Google Scholar

    [44]

    舒适 2018 硕士学位论文 (北京: 有色金属研究总院)

    Shu S 2018 M. S. Thesis (Beijing: General Research Institute for Nonferrous Metals) (in Chinese)

  • 图 1  层流气体雾化过程示意图

    Figure 1.  Illustration of laminar flow gas atomization process.

    图 2  自主设计的气雾化设备示意图

    Figure 2.  Schematic diagram of home-made gas atomization equipment.

    图 3  (a)层流气体雾化喷嘴系统及流场结构示意图; (b)气体单相计算域、网格划分及边界条件

    Figure 3.  (a) Schematic of the nozzle system and flow field structure in the laminar flow gas atomization; (b) computational domain and mesh grid of single-phase, and primary atomization with boundary conditions.

    图 4  液滴飞行过程中受力平衡示意图

    Figure 4.  Schematic diagram of the force balance on the in-flight droplets.

    图 5  二次雾化数值模拟的计算域、网格和边界条件

    Figure 5.  Computational domain, mesh, and boundary conditions for numerical simulation of secondary atomization.

    图 6  (a)入口压力为2.0 MPa时流场中的气体速度矢量; (b)入口压力为2.0 MPa时的雾化气体速度等值线

    Figure 6.  (a) Gas velocity vector depicting flow characteristics at pressure inlet of 2.0 MPa; (b) atomizing gas velocity contours at an inlet pressure of 2.0 MPa.

    图 7  气体流场特性 (a)不同入口压力下沿喷嘴中心线的气体速度曲线; (b)不同入口压力下沿喷嘴中心线的气体压力曲线

    Figure 7.  Gas flow field characteristics: (a) Gas velocity curve along nozzle center-line under different inlet pressures; (b) gas pressure curve along nozzle center-line under different inlet pressures.

    图 8  De Laval喷嘴的一次雾化过程 (a)初始阶段; (b)稳定阶段

    Figure 8.  Primary atomization process with the De Laval nozzle: (a) Initial period; (b) stable period.

    图 9  (a) 导流管出口处的凝固熔体; (b) De Laval喷嘴扩张段一次雾化后凝固熔体的形态

    Figure 9.  (a) Solidified melts at the outlet of the delivery tube; (b) morphology of solidified melts after primary atomization at the divergent section of De Laval nozzle.

    图 10  (a) 气液两相速度矢量; (b) 在t = 0.20 ms下一次雾化中熔体形态的比较

    Figure 10.  Comparison of (a) two-phase velocity vector; (b) morphology of melt in primary atomization at t = 0.20 ms.

    图 11  大液滴形态 (a)不规则薄片; (b)不规则棒状

    Figure 11.  Morphology of huge droplet: (a) Irregular flake; (b) irregular bar.

    图 12  不同尺寸液滴在气流中的速度随飞行时间的变化

    Figure 12.  The velocity of droplets with different sizes in gas flow as a function of flying time.

    图 13  (a)典型的液滴破碎模式[14]; (b)液滴破碎过程的阴影图像[38]

    Figure 13.  (a) Schematic diagram of typical droplet breakup modes[14]; (b) shadowgraph of droplet breakup process[38].

    图 14  丝状熔体的不同扰动模式 (a) 扩张(对称)扰动; (b)弯曲(不对称)扰动

    Figure 14.  (a) Dilatational (symmetric) disturbance; (b) sinuous (asymmetric) disturbance of liquid ligaments.

    图 15  液滴破碎的不同阶段及雾化气流的运动规律

    Figure 15.  Atomizing gas streamline moving with droplet at different breakup stages.

    图 16  (a) Rayleigh-Taylor不稳定变形; (b) Sheet-Thinning破碎机理[37,43]

    Figure 16.  (a) Rayleigh-Taylor instability deformation; (b) Sheet-Thinning breakup mechanism[37,43].

    图 17  (a) 层流气流雾化粉末的截面特性; (b) 三角形粉末的扫描电镜图像

    Figure 17.  (a) Cross-section characteristics of laminar flow gas atomized powders; (b) SEM images of triangular powder.

    图 18  熔融韧带的二次雾化过程

    Figure 18.  Secondary atomization process of melt ligaments.

    图 19  层流气体雾化制备粉末的扫描电镜图像

    Figure 19.  SEM image of powders prepared using laminar flow gas atomization.

    图 20  AlSi10Mg粉末表征 (a) 粒径分布; (b) 球形度; (c) XCT三维重构形貌图

    Figure 20.  Characterization of AlSi10Mg powders: (a) Particle size distribution; (b) sphericity; (c) 3D surface view reconstructed by XCT.

    图 21  De Laval喷嘴层流雾化过程

    Figure 21.  Processes of laminar flow atomization with De Laval nozzle.

    表 1  单相流模型的模拟参数

    Table 1.  Simulation parameters of the single-phase flow model.

    参数数值
    入口压力/MPa1.01.52.02.53.0
    出口压力/MPa0.1
    DownLoad: CSV

    表 2  数值模拟中使用的AlSi10Mg合金和氩气的特性参数[30]

    Table 2.  Properties of AlSi10Mg alloy and argon used for numerical simulation[30].

    材料参数数值
    AlSi10Mg比热容/(J·kg–1·K–1)871
    密度/(kg·m–3)2719
    黏度/(kg·m–1·s–1)0.0135
    导热系数/(W·m–1·K–1)202.4
    表面张力/(N·m–1)0.854
    Ar比热容/(J·kg–1·K–1)520.64
    导热系数/(W·m–1·K–1)0.0158
    黏度/(kg·m–1·s–1)2.125 × 10–5
    DownLoad: CSV

    表 3  一次雾化模拟参数

    Table 3.  Simulation parameters of primary atomization.

    参数数值
    入口压力/MPa2.0
    出口压力/MPa0.1
    质量流量/(g·s–1)20
    熔体初始温度/K1073
    DownLoad: CSV

    表 4  二次雾化的数值模拟参数

    Table 4.  Parameters for numerical simulation of the secondary breakup.

    参数数值
    入口速度/(m·s–1)400
    液滴直径/μm1000
    丝状熔体尺寸/μmφ50 × 500
    DownLoad: CSV

    表 A1  文中所用参数

    Table A1.  Parameters in the article.

    ${{\rho } }_{\rm{g} }$气体密度
    t时间
    ${{u} }_{{i} }$$ {x}_{i} $方向上的速度分量
    ${{u} }_{{j} }$$ {x}_{j} $方向上的速度分量
    ${{\mu } }$动力黏度
    ${{\tau } }_{{ij} }$雷诺应力张量
    ${{S} }_{{i} }$动量守恒方程的广义源项
    ${{S} }_{\rm{T} }$粘性耗散函数
    T温度
    K热导率
    k湍流动能
    ${{\varepsilon } }$湍流动能耗散率
    ${{G} }_{{k} }$平均速度梯度引起的湍流动能k
    ${{G} }_{\rm{b} }$浮力产生湍流动能k
    ${{Y} }_{\rm{M} }$可压缩湍流中脉动膨胀
    ${\mu }_{{t} }$湍流黏度
    ${{S} }_{{k} }$, ${{S} }_{{\varepsilon } }$源项
    v速度矢量
    P压力
    ${{\tau } }$粘性应力张量
    ${{\sigma } }$表面张力
    $ \alpha $体积相分数
    g重力加速度
    ${{F} }_{\sigma }$体积表面张力
    ${{F} }_{\rm{D} }$阻力
    ${{A} }_{\rm{d} }$液滴最大截面积
    ${{p} }_{\rm{dg} }$气体作用在液滴上的压力
    ${{u} }_{\rm{g} }$气流速度
    ${{u} }_{\rm{d} }$液滴速度
    ${{\mu } }_{\rm{g} }$气体黏性系数
    ${{C} }_{\rm{D} }$阻力系数
    d特征长度
    ${{\rho } }_{\rm{d} }$液滴密度
    ${{V} }_{\rm{d} }$液滴体积
    ${{Re} }$雷诺数
    u特征速度
    ${{We} }$韦伯数
    DownLoad: CSV
    Baidu
  • [1]

    Chen C Y, Xie Y C, Yan X C, Yin S, Fukanuma H, Huang R Z, Zhao R X, Wang J, Ren Z M, Liu M, Liao H L 2019 Addit. Manuf. 27 595Google Scholar

    [2]

    Frazier W E 2014 J. Mater. Eng. Perform. 23 1917Google Scholar

    [3]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [4]

    Jia W M, Chen S Y, Wei M W, Liang J, Liu C S, Li J G 2019 Powder Metall. 62 30Google Scholar

    [5]

    Gerling R, Schimansky F P, Wegmann G 2010 Adv. Eng. Mater. 3 387Google Scholar

    [6]

    Liu M J, Zhang K J, Zhang Q, Zhang M, Yang G J, Li C X, Li C J 2019 Appl. Surf. Sci. 471 950Google Scholar

    [7]

    Balbaa M A, Ghasemi A, Fereiduni E, Elbestawi M A, Jadhav S D, Kruth J P 2020 Addit. Manuf. 10163Google Scholar

    [8]

    Baitimerov R, Lykov P, Zherebtsov D, Radionova L, Shultc A, Prashanth K G 2018 Materials (Basel) 11 742Google Scholar

    [9]

    Maskery I, Aboulkhair N T, Corfield M R, Tuck C, Clare A T, Leach R K, Wildman R D, Ashcroft I A, Hague R J M 2016 Mater. Charact. 111 193Google Scholar

    [10]

    Henein H, Uhlenwinkel V, Fritsching U 2017 Metal Sprays and Spray Deposition (Cham: Springer)pp 49−70

    [11]

    Wei M W, Chen S Y, Sun M, Liang J, Liu C S, Wang M 2020 Powder Technol. 367 724Google Scholar

    [12]

    Wei M W, Chen S Y, Liang J, Liu C S 2017 Vacuum 143 185

    [13]

    Park J M, Na T W, Park H K, Yang S M, Kang J W, Lee T W 2019 Mater. Lett. 243 5Google Scholar

    [14]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1Google Scholar

    [15]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75Google Scholar

    [16]

    Planche M P, Khatim O, Dembinski L, Bailly Y, Coddet C 2013 Mater. Chem. Phys. 137 681Google Scholar

    [17]

    Schulz G 1996 Met. Powder Rep. 51 30Google Scholar

    [18]

    Stobik M 2000 Adv. Eng. Mater. 2 547

    [19]

    Ahmed M, Pasha M, Nan W G, Ghadiri M 2020 Powder Technol. 367 671Google Scholar

    [20]

    Yu S S, Zhang P C, Qiu K H, Zhang W T, Li J F, Yao S, Zhou D Y, Yao N N, Li J C 2018 Ferroelectrics 530 25Google Scholar

    [21]

    Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C 2009 Powder Technol. 190 79Google Scholar

    [22]

    Khatim O, Planche M P, Dembinski L, Bailly Y, Coddet C 2010 Surf. Coat. Technol. 205 1171Google Scholar

    [23]

    Kaiser R, Li C G, Yang S S, Lee D G 2018 Adv. Powder Technol. 29 623Google Scholar

    [24]

    Mi J, Figliola R S, Anderson I E 1997 Metall. Mater. Trans. B 28 935Google Scholar

    [25]

    Ting J, Anderson I E 2004 Mater. Sci. Eng. A 379 264Google Scholar

    [26]

    Xiao F, Dianat M, McGuirk J J 2014 Atomization Sprays 24 281Google Scholar

    [27]

    夏敏, 汪鹏, 张晓虎, 葛昌纯 2018 67 170201Google Scholar

    Xia M, Wang P, Zhang X H, Ge C C 2018 Acta Phys. Sin. 67 170201Google Scholar

    [28]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [29]

    Shao C X, Luo K, Yang J S, Chen S, Fan J R 2015 Chin. J. Chem. Eng. 23 597Google Scholar

    [30]

    Rabin B H, Swank W D, Wright R N 2013 Nucl. Eng. Des. 262 72Google Scholar

    [31]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623Google Scholar

    [32]

    Yang Q, Liu Y T, Liu J, Wang L, Chen Z, Wang M L, Zhong S Y, Wu Y, Wang H W 2019 Mater. Des. 182 108045Google Scholar

    [33]

    Sarkar S, Sivaprasad P V, Bakshi S 2016 Atomization Sprays 26 23Google Scholar

    [34]

    Markus S, Fritsching U 2006 Int. J. Powder Metall. 42 23

    [35]

    Strotos G, Malgarinos I, Nikolopoulos N, Gavaises M 2016 Int. J. Multiphase Flow 85 96Google Scholar

    [36]

    Su Y H, Tsao C Y A 1997 Metall. Mater. Trans. B 28 1249Google Scholar

    [37]

    Guildenbecher D R, Lopez R C, Sojka P E 2009 Exp. Fluids 46 371Google Scholar

    [38]

    Guildenbecher D R, Lopez R C, Sojka P E 2011 Handbook of Atomization and Sprays: Theory and Applications (Boston: Springer US) pp145−156

    [39]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [40]

    Ashgriz N, Li X, Sarchami A 2011 Handbook of Atomization and Sprays: Instability of Liquid Sheets (Boston: Springer US) pp75−95

    [41]

    Chuech S G 2006 Int. J. Numer. Methods Fluids 50 1461Google Scholar

    [42]

    Dai Z, Faeth G M 2001 Int. J. Multiphase Flow 27 217Google Scholar

    [43]

    Yang W, Jia M, Sun K, Wang T Y 2016 Fuel 174 25Google Scholar

    [44]

    舒适 2018 硕士学位论文 (北京: 有色金属研究总院)

    Shu S 2018 M. S. Thesis (Beijing: General Research Institute for Nonferrous Metals) (in Chinese)

  • [1] Tan Chao, Liang Yong, Zou Min, Lei Tong, Chen Long, Tang Ping-Hua, Liu Ming-Wei. Dynamics of quadratic phase controlled Hermite-Gaussian beams in fractional systems based on different variable coefficients and potentials. Acta Physica Sinica, 2024, 73(13): 134205. doi: 10.7498/aps.73.20240427
    [2] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Lü Jun-Fu, Peng Zhi-Min. Wide-range and calibration-free H2S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [3] Jin Xuan, Shen Chi-Bing. Fragmentation and atomization characteristics of near-orifice liquid jet under transverse gas film. Acta Physica Sinica, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [4] Liu Juan, Li Qi. A coupledj-mode method for sound propagation in range-dependent waveguides. Acta Physica Sinica, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [5] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] Wang Si-Qiang, Ji Shun-Ying. Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method. Acta Physica Sinica, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [7] Rong Song, Shen Shi-Quan, Wang Tian-You, Che Zhi-Zhao. Bouncing-with-spray mode and residence time of droplet impact on heated surfaces. Acta Physica Sinica, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [8] Xia Min, Wang Peng, Zhang Xiao-Hu, Ge Chang-Chun. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Physica Sinica, 2018, 67(17): 170201. doi: 10.7498/aps.67.20180584
    [9] Zhu Guang-Zheng, Guo Lian-Bo, Hao Zhong-Qi, Li Chang-Mao, Shen Meng, Li Kuo-Hu, Li Xiang-You, Liu Jian-Guo, Zeng Xiao-Yan, Lu Yong-Feng. Detection of metal element in water using laser-induced breakdown spectroscopy assisted by nebulizer. Acta Physica Sinica, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [10] Song Zhang-Dai, Zhang Lin. Self-sustained oscillation in controllable quadratic coupling opto-mechanical systems. Acta Physica Sinica, 2013, 62(20): 204204. doi: 10.7498/aps.62.204204
    [11] Wang Wen-Yuan, Yang Yang, Meng Hong-Juan, Ma Ying, Qi Peng-Tang, Ma Yun-Yun, Duan Wen-Shan. The self-trapping of superfluid Fermi gases in the Bose-Einstein condensation regime and in unitarity. Acta Physica Sinica, 2012, 61(10): 100301. doi: 10.7498/aps.61.100301
    [12] Liu Lei, Fei Jian-Fang, Huang Xiao-Gang, Cheng Xiao-Ping. The development of atmosphere-current-wave fully coupled model and its application during a typhoon process. Acta Physica Sinica, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [13] Lu Cao-Wei, Lu Zhi-Chao, Sun Ke, Li De-Ren, Zhou Shao-Xiong. Magnetic properties of amorphous Fe74Al4Sn2P10C2B4Si4 powder prepared by water atomization and powder core made from it. Acta Physica Sinica, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [14] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [15] Wu Jian-Rong. Quadratic stability and quadratic stabilization for singular system families. Acta Physica Sinica, 2004, 53(2): 325-330. doi: 10.7498/aps.53.325
    [16] LIU QI-MING, ZHAO XIU-JIAN, GAN FU-XI. SECOND HARMONIC GENERATION IN THE SYSTEM Ge-As-S ADN ANALYSIS OF THE POLING MECH ANISM. Acta Physica Sinica, 2000, 49(9): 1726-1730. doi: 10.7498/aps.49.1726
    [17] LI LE, YU GONG-DA, DONG SHU-YAN, WANG GONG-MING, ZHANG ZHI-MING. STUDIES ON THE ADSORPTION OF PYRIDINE MOLECULES ON SILVER SURFACES BY SHG METHOD. Acta Physica Sinica, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [18] ZHU ANG-RU, WU XI-LIN. THE MECHANISM OF THE SECONDARY ION EMISSION INVESTIGATED BY THE EFFECT OF ENERGETIC ELECTRONS. Acta Physica Sinica, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
    [19] LIN JIN-GU, LIU CHENG-HUI, ZHU ZHEN-HE, LAI RUI-SHENG, HUO CHONG-RU. PULSE WIDTH MEASUREMENT OF THE PASSIVELY MODE-LOCKED Nd:YAG LASER BY NONCOLLINEAR SHG METHOD. Acta Physica Sinica, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
    [20] ZOU BEN-SAN, YE HENG-QIANG, WU YU-KUN, GUO KE-XIN. ON REDUCTION OF THE HIGH ORDER TWINNING IN FCC STRUCTURE TO A SINGLE ROTATION RELATIONSHIP. Acta Physica Sinica, 1979, 28(3): 297-304. doi: 10.7498/aps.28.297
Metrics
  • Abstract views:  8232
  • PDF Downloads:  219
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2020
  • Accepted Date:  28 February 2021
  • Available Online:  12 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回
Baidu
map