搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次耦合光力学系统的一类高维可控自持振荡行为

宋张代 张林

引用本文:
Citation:

二次耦合光力学系统的一类高维可控自持振荡行为

宋张代, 张林

Self-sustained oscillation in controllable quadratic coupling opto-mechanical systems

Song Zhang-Dai, Zhang Lin
PDF
导出引用
  • 光力学系统通常的耦合是光压耦合, 是光场强度和纳米振子位移的一次耦合, 但在光场很强和振子振幅较大的光力学系统中, 非线性的耦合效应会变得非常明显和重要, 而且其所产生的非线性效应对制造具有特殊功能的光力学器件具有重要意义. 本文在二次耦合模型的基础上研究了光腔和振子之间通过二次耦合作用达到能 量平衡状态时系统所产生的自持振荡现象, 给出了二次耦合光力学系统的一般模型, 并通过数值方法研究了系统的定态行为和远离定态的极限环动力学行为, 标定了系统定态响应的稳定区域到极限环行为的分岔点. 发现在调节输入场参数(改变耦合系数)以及光腔和振子的弛豫系数时, 系统的相空间会出现一些稳定的高维自持振荡极限环. 通过数值分析发现该四维极限环在三维相空间的投影都趋于稳定的三维周期轨道, 并且该极限环轨道会随外部调控参数的改变发生扭动, 出现类似二维李萨如图样的稳定纽结结构. 该现象表明: 通过光场与振子的能量耦合, 利用一定强度的外部驱动可以有效控制振子的定态响应和振动, 可以让微振子锁定在具有一定振幅和频率的自发振动上, 为开发物理器件提供了可靠的光力学控制系统.
    The traditional opto-mechanical coupling in an opto-mechanical system is a linear coupling which is proportional to the field intensity I and oscillator displacement x. The nonlinear spatial coupling effect becomes obvious and important in a strong cavity field with large oscillating amplitude, and then the nonlinear effect with quadratic coupling in opt-mechanical device is also significant. In this article, we find that a general opto-mechanical system with quadratic coupling will produce a stable self-sustained oscillation when the energy injected by external driving equals that of dissipations in certain parametric regions. We numerically solve the semi-classical equation of motion of the system and find high-dimensional limit circles in its phase space under the control of driving and damping. We verify the high-dimensional limit circles by the closed orbits in all the projective three-dimensional phase space and show a highly controllable topological structure of the phase orbit which is very similar to Lissajous figures formed in a two-dimensional case. The self-sustained oscillations of the driving resonator with controllable amplitudes and frequencies demonstrate a reliable physical application of opto-mechanical system under quadratic coupling.
    • 基金项目: 中央高校基础科研业务费(批准号: GK201302010)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. GK201302010).
    [1]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [2]

    Bocko M F, Onofrio R 1996 Rev. Mod. Phys. 68 755

    [3]

    Pirkkalainen J M, Cho S U, Jian Li, Paraoanu G S, Hakonen P J, SillanpääM A 2013 Nature 494 211

    [4]

    Mi X W, Bai J X, Li D J 2012 Chin. Phys. B 21 030303

    [5]

    Zhang D, Zhang X P, Zheng Q 2013 Chin. Phys. B 22 064206

    [6]

    Zhang D, Zheng Q 2013 Chin. Phys. Lett. 30 024213

    [7]

    Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Giuseppe G Di, Vitali D 2012 New J. Phys. 14 095015

    [8]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武 2011 60 124206]

    [9]

    Bonin K D, Kourmanov B, Walker T G 2002 Opt. Express 10 984

    [10]

    Kippenberg T J, Rokhsari H, Carmon T, Scherer A, Vahala K J 2005 Phys. Rev. Lett. 95 033901

    [11]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [12]

    Gröblache S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [13]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nature Phys. 6 707

    [14]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [15]

    Nunnenkamp A, Borkje K, Harris J G E, Girvin S M 2010 Phys. Rev. A 82 021806

    [16]

    Teng J H, Wu S L, Cui B, Yi X X 2012 J. Phys. B: At. Mol. Opt. Phys. 45 185506

    [17]

    Jenkins A 2013 Phys. Reports 525 167

    [18]

    Holmes C A, Milburn G J 2009 Fortschr. Phys. 57 1052

    [19]

    Domokos P, Ritsch H 2003 J. Opt. Soc. Am. B 20 1098

    [20]

    Zippilli S, Morigi G 2005 Phys. Rev. A 72 053408

    [21]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [22]

    Gigan S, Bohm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [23]

    Bhattacharya M, Shi H, Preble S 2013 Am. J. Phys. 81 267

    [24]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林, 董文杰, 贾晓静, 曹鸿兴 2002 51 1181]

    [25]

    Liu S H, Tang J S 2007 Acta Phys. Sin. 56 3145 (in Chinese) [刘素华, 唐驾时 2007 56 3145]

    [26]

    Zhao Q, Liu S K, Liu S D 2012 Acta Phys. Sin. 61 220201 (in Chinese) [赵强, 刘式适, 刘式达 2012 61 220201]

    [27]

    Giacomini H, Llibre J, Viano M 1996 Nonlinearity 9 501

    [28]

    Blows T R, Lloyd N G 1984 Proc. Roy. Soc. Edinb. 98A 215

    [29]

    Suh J, Shaw M D, LeDuc H G, Weinstein A J, Schwab K C 2012 Nano Lett. 12 6260

  • [1]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603

    [2]

    Bocko M F, Onofrio R 1996 Rev. Mod. Phys. 68 755

    [3]

    Pirkkalainen J M, Cho S U, Jian Li, Paraoanu G S, Hakonen P J, SillanpääM A 2013 Nature 494 211

    [4]

    Mi X W, Bai J X, Li D J 2012 Chin. Phys. B 21 030303

    [5]

    Zhang D, Zhang X P, Zheng Q 2013 Chin. Phys. B 22 064206

    [6]

    Zhang D, Zheng Q 2013 Chin. Phys. Lett. 30 024213

    [7]

    Karuza M, Molinelli C, Galassi M, Biancofiore C, Natali R, Tombesi P, Giuseppe G Di, Vitali D 2012 New J. Phys. 14 095015

    [8]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武 2011 60 124206]

    [9]

    Bonin K D, Kourmanov B, Walker T G 2002 Opt. Express 10 984

    [10]

    Kippenberg T J, Rokhsari H, Carmon T, Scherer A, Vahala K J 2005 Phys. Rev. Lett. 95 033901

    [11]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [12]

    Gröblache S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [13]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nature Phys. 6 707

    [14]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [15]

    Nunnenkamp A, Borkje K, Harris J G E, Girvin S M 2010 Phys. Rev. A 82 021806

    [16]

    Teng J H, Wu S L, Cui B, Yi X X 2012 J. Phys. B: At. Mol. Opt. Phys. 45 185506

    [17]

    Jenkins A 2013 Phys. Reports 525 167

    [18]

    Holmes C A, Milburn G J 2009 Fortschr. Phys. 57 1052

    [19]

    Domokos P, Ritsch H 2003 J. Opt. Soc. Am. B 20 1098

    [20]

    Zippilli S, Morigi G 2005 Phys. Rev. A 72 053408

    [21]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [22]

    Gigan S, Bohm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [23]

    Bhattacharya M, Shi H, Preble S 2013 Am. J. Phys. 81 267

    [24]

    Feng G L, Dong W J, Jia X J, Cao H X 2002 Acta Phys. Sin. 51 1181 (in Chinese) [封国林, 董文杰, 贾晓静, 曹鸿兴 2002 51 1181]

    [25]

    Liu S H, Tang J S 2007 Acta Phys. Sin. 56 3145 (in Chinese) [刘素华, 唐驾时 2007 56 3145]

    [26]

    Zhao Q, Liu S K, Liu S D 2012 Acta Phys. Sin. 61 220201 (in Chinese) [赵强, 刘式适, 刘式达 2012 61 220201]

    [27]

    Giacomini H, Llibre J, Viano M 1996 Nonlinearity 9 501

    [28]

    Blows T R, Lloyd N G 1984 Proc. Roy. Soc. Edinb. 98A 215

    [29]

    Suh J, Shaw M D, LeDuc H G, Weinstein A J, Schwab K C 2012 Nano Lett. 12 6260

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统.  , 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学.  , 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [3] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响.  , 2022, 71(21): 214205. doi: 10.7498/aps.71.20220865
    [4] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测.  , 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [5] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强.  , 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [6] 游波, 岑理相. 非马尔科夫耗散系统长时演化下的极限环振荡现象.  , 2015, 64(21): 210302. doi: 10.7498/aps.64.210302
    [7] 赵强, 刘式适, 刘式达. 一类厄尔尼诺-南方涛动充电-放电振子模型研究.  , 2012, 61(22): 220201. doi: 10.7498/aps.61.220201
    [8] 宋君强, 曹小群, 张卫民, 朱小谦. 厄尔尼诺和南方涛动海气耦合模型中参数估计的变分方法.  , 2012, 61(11): 110401. doi: 10.7498/aps.61.110401
    [9] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制.  , 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [10] 时培明, 李纪召, 刘彬, 韩东颖. 一类准周期参激非线性相对转动动力系统的稳定性与时滞反馈控制.  , 2011, 60(9): 094501. doi: 10.7498/aps.60.094501
    [11] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析.  , 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [12] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制.  , 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [13] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制.  , 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [14] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制.  , 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [15] 唐驾时, 萧 寒. 耦合的van der Pol振子的极限环幅值控制.  , 2007, 56(1): 101-105. doi: 10.7498/aps.56.101
    [16] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解.  , 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [17] 吴健荣. 广义系统族的二次稳定与二次镇定.  , 2004, 53(2): 325-330. doi: 10.7498/aps.53.325
    [18] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌.  , 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
    [19] 封国林, 董文杰, 贾晓静, 曹鸿兴. 海-气振荡子中的极限环解.  , 2002, 51(6): 1181-1185. doi: 10.7498/aps.51.1181
    [20] 颜森林, 伍仕宝, 逄焕刚, 孙小菡, 张明德. 混沌系统的注入反馈控制与动态控制方法研究.  , 2001, 50(3): 428-434. doi: 10.7498/aps.50.428
计量
  • 文章访问数:  5880
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-23
  • 修回日期:  2013-07-19
  • 刊出日期:  2013-10-05

/

返回文章
返回
Baidu
map