搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟研究

史寒旭 李欣阳 张钰如 王友年

引用本文:
Citation:

超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟研究

史寒旭, 李欣阳, 张钰如, 王友年

Numerical investigation of the secondary electron effect in capacitively coupled plasmas driven by ultra-low frequency/radio frequency sources

Shi Han-Xu, Li Xin-Yang, Zhang Yu-Ru, Wang You-Nian
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文采用二维流体模型,研究了不同的超低频电压、二次电子发射系数和极板间隙下,二次电子对双频容性耦合等离子体特性的影响,其中超低频源频率为400 kHz。首先,采用依赖离子能量的二次电子发射系数,发现电子密度随超低频电压呈现出先降低后增高的趋势。这是由于一方面,较高的超低频电压会压缩有效放电体积;另一方面,极板发射的二次电子可以获得更多的能量,进而增强电离过程。通过与固定的二次电子发射系数的结果相比,发现在较低的超低频电压下,采用依赖能量的二次电子发射系数的结果接近于固定值为0.1的情况;随着超低频电压的增加,当采用依赖能量的发射系数时,密度涨幅超过固定值为0.2的结果,说明超低频电压对二次电子效应的增强效果并不是线性的。最后,对比了不同极板间隙下的等离子体特性,发现随着极板间隙从2 cm增加到4 cm,电离率的峰值有所下降,但电子密度显著增加,等离子体的径向均匀性有所改善。此外,随着超低频电压的升高,极板间隙对密度的影响越显著。本文的研究结果有助于深入理解超低频电源参数对于二次电子效应的影响,并为等离子体工艺的优化提供一定的指导。
    In recent years, capacitively coupled plasmas driven by ultra-low frequency source have garnered increasing attention, because they are beneficial for generating ions with high energy and small scattering angle, which aligns well with the current trend in high aspect ratio etching. Since the sheath becomes thicker when a ultra-low frequency source is applied, the secondary electron emission becomes significant. Indeed, these energetic secondary electrons could enhance the ionization process and even influence the discharge mode. In this work, a two-dimensional fluid model is employed to study the influence of secondary electrons on the dual frequency capacitively coupled plasmas under different ultra-low frequency voltages, secondary electron emission coefficients and inter-electrode gaps. The high frequency is fixed at 13.6 MHz, and the ultra-low frequency is fixed at 400 kHz. First, by using the ion energy dependent secondary electron emission coefficient, it is shown that the electron density first decreases and then increases with ultra-low frequency voltage. This is because on one hand, the higher ultra-low frequency voltage leads to thicker sheath, and therefore, the effective discharge volume is compressed. On the other hand, secondary electrons emitted from electrodes could obtain more energy, and thus enhance the ionization process. By comparing with the results obtained with fixed secondary electron emission coefficients, it is found that in the low voltage range, the evolution of the electron density is similar to that with fixed coefficient of 0.1. While, in the high voltage range, the growth of the electron density is even more pronounced than that with fixed coefficient of 0.2, indicating that the enhancement of the secondary electron effect by ultra-low frequency voltage is non-linear. Finally, the impact of discharge gap on the plasma properties has also been discussed. It is shown that with the increase of inter-electrode gap from 2 cm to 4 cm, the maximum ionization rate becomes lower, but the electron density rises significantly, and the plasma radial uniformity is improved. When inter-electrode gap is large, secondary electrons could collide with neutral species fully, and thus their influence on the electron density at high ultra-low frequency voltage is more pronounced. The results obtained in this paper are helpful to understand the influence of ultra-low frequency source on the secondary electron effect, and provide some guidance for the optimization of plasma processing.
  • [1]

    Dai Z L, Mao M, Wang Y N 2006 Phys 35 693 (in Chinese) [戴忠玲,毛明,王友年 2006 物理 35 693]

    [2]

    Kim S S, Hamaguchi S, Yoon N S, Chang C S, Lee Y D, Ku S H 2001 Phys. Plasmas 8 1384

    [3]

    Tan Y C, Wu S H, Zhu Z X, Xiang Q J, Zhu Z Y, Tian Z 2018 J Synth Cryst 47 1272

    [4]

    Lieberman M A, Lichtenberg A J 2008 Principles of Plasma Discharges and Materials Processing Principles of Plasma Discharges & Materials Processing 11 800

    [5]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas Cambridge University Press: Cambridge

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol 14 89

    [7]

    Han L, Kenney J, Rauf S, Korolov I, Schulze J 2023 Plasma Sources Sci. Technol 32 115018

    [8]

    Kim H H, Shin J H, Lee H J 2023 J. Vac. Sci. Technol. A 41 023004

    [9]

    Zhou Y, Zhao K, Ma F F, Liu Y X, Gao F, Julian Schulze, Wang Y N 2024 Appl. Phys. Lett 124 064102

    [10]

    Zhou Y, Zhao K, Ma F F, Sun J Y, Liu Y X, Gao F, Zhang Y R, Wang Y N 2025 Plasma Sources Sci. Technol 34 035016

    [11]

    Wang J C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol 30 075031

    [12]

    Liu J, Zhang Q Z, Liu Y X, Gao F, Wang Y N 2013 J. Phys. D: Appl. Phys 46 235202

    [13]

    Hartmann P, Korolov I, Escandon L J, Gennip W V, Buskes K, Schulze J 2022 Plasma Sources Sci. Technol 31 055017

    [14]

    Hartmann P, Wang L, Nosges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donko Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol 29 075014

    [15]

    Liu G H, Wang X Y, Liu Y X, Sun J Y, Wang Y N 2018 Plasma Sources Sci. Technol 27 064004

    [16]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol 18 034011

    [17]

    Takagi S, Chikata T, Sekine M 2021 Jpn. J. Appl. Phys 60 SAAB07

    [18]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett 97 081501

    [19]

    Schulze J, Donko Z, Schuengel E, Czarnetzki U 2011 Plasma Sources Sci. Technol 20 045007

    [20]

    Saikia P, Bhuyan H, Yap S L, Escalona M, Favre M, Wyndham E, Schulze J 2019 Phys. Plasmas 26 083505

    [21]

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin 70 095206

    [22]

    Zhang Y R, Xiang X, Zhao S X, Bogaerts A, Wang Y N 2010 Phys.Plasma 17 113512

    [23]

    Kurokawa M, Kitajima M, Toyoshima K, Kishino T 2011 Physical Review A 84 062717

    [24]

    De Heer F J, Jansen R H J, Van Der Kaay W 1979 J. Phys. B: Atom. Mol. Phys 12 979

    [25]

    Tachibana K 1986 Phys. Rev. A 34 1007

    [26]

    Rejoub R, Lindsay B G, Stebbings R F 2002 Phys. Rev. A 65 042713

    [27]

    Ali M A, Stone P M 2008 Int. J. Mass Spectrom 271 51

    [28]

    Phelps A V, Pitchford L C, Pedoussat C, Donko Z 1999 Plasma Sources Sci. Technol 8 B1

    [29]

    Brinkmann R P 2007 J. Appl. Phys 102 093303

    [30]

    Hartmann P, Wang L, Nosges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donko Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol 29 075014

    [31]

    Horvath B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol 26 124001

    [32]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys Rev Lett 108 255001

    [33]

    Campanell M D 2013 Phys Rev E 88 033103

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素.  , doi: 10.7498/aps.74.20241550
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究.  , doi: 10.7498/aps.73.20230712
    [3] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用.  , doi: 10.7498/aps.73.20240343
    [4] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真.  , doi: 10.7498/aps.73.20231056
    [5] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , doi: 10.7498/aps.73.20240577
    [6] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输.  , doi: 10.7498/aps.71.20212036
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , doi: 10.7498/aps.70.20201828
    [8] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制.  , doi: 10.7498/aps.70.20210473
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , doi: 10.7498/aps.67.20172192
    [10] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响.  , doi: 10.7498/aps.67.20181400
    [11] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究.  , doi: 10.7498/aps.66.246102
    [12] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统.  , doi: 10.7498/aps.65.200702
    [13] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , doi: 10.7498/aps.63.067901
    [14] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析.  , doi: 10.7498/aps.63.220205
    [15] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟.  , doi: 10.7498/aps.62.175204
    [16] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , doi: 10.7498/aps.62.055101
    [17] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟.  , doi: 10.7498/aps.61.241401
    [18] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响.  , doi: 10.7498/aps.60.125203
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , doi: 10.7498/aps.53.3440
    [20] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化.  , doi: 10.7498/aps.52.109
计量
  • 文章访问数:  34
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-07

/

返回文章
返回
Baidu
map