-
结合腔衰荡光谱(CRDS)与波长调制-直接吸收光谱(WM-DAS), 建立了一种宽量程、免标定的气体体积分数的检测方法, 具有CRDS高信噪比及WM-DAS快速和可测量绝对体积分数的优点. 基线衰荡时间(τ0)可通过测量谱线中心频率处吸收率(WM-DAS)和衰荡时间(CRDS)计算得到, 无需实时校准, 极大提升了CRDS测量速度. 室温常压下, 在6336.617 cm–1处不同体积分数的H2S测量结果表明, 该方法动态测量范围可扩展到4个数量级以上, 测量精度相比WM-DAS得到了提高, 且检测限可在40 s内达到1 × 10–9.
-
关键词:
- 腔衰荡光谱 /
- 波长调制-直接吸收光谱 /
- 宽量程 /
- 免标定 /
- 硫化氢浓度
Combining cavity ring down spectroscopy (CRDS) and wavelength modulated direct absorption spectroscopy (WM-DAS), a wide range and calibration-free gas concentration detection method is established, which has the advantages of high signal-to-noise ratio of CRDS and fast speed and measurable absolute concentration of WM-DAS. The baseline ring down time (τ0) can be calculated by measuring the absorptivity (WM-DAS) and ring down time (CRDS) at the central frequency of the spectral line, without real-time calibration, which greatly improves the speed of CRDS measurement. The measurement results of different H2S concentrations at 6336.617 cm–1 at room temperature and atmospheric pressure show that the dynamic measurement range of this method can be extended to more than 4 orders of magnitude, the measurement accuracy is improved in comparison with WM-DAS, and the detection limit can reach 1 × 10–9 in 40 s.-
Keywords:
- cavity ring down spectroscopy /
- wavelength modulation-direct absorption spectroscopy /
- wide range /
- calibration free /
- H2S concentration
[1] Li R, C Warneke, Graus M, Field R, Geiger F, Veres P R, Soltis J, Li S M, Murphy S M, Sweeney C, Pétron G, Roberts J M, de Gouw J 2014 Atmos. Meas. Tech. 7 3597Google Scholar
[2] Saha C K, Feilberg A, Zhang G Q, Adamsen A P S 2011 Sci. Total Environ. 410–411 161
[3] Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar
[4] Guo Y C, Qiu X B, Li N, Feng S L, Cheng T, Liu Q Q, He Q S, Kan R F, Yang H N, Li C L 2020 Infrared Phys. Technol. 105 103153Google Scholar
[5] Liu D, Feilberg A, Adamsen A P S, Jonassen K E N 2011 Atmos. Environ. 45 3786Google Scholar
[6] Pal M, Maithani S, Maity A, Pradhan M 2019 J. Anal. At. Spectrom. 34 860Google Scholar
[7] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar
[8] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[9] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[10] Wang Z, Peng Z M, Ding Y J, Du Y J 2020 J. Opt. Soc. Am. B 37 1144Google Scholar
[11] Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[12] McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar
[13] Mao L J, Cai M J, Liu Q Y, Wang G R, Wang X Y 2019 Energy Sci. Eng. 7 2596Google Scholar
[14] Ko J H, Xu Q Y, Jang Y C 2015 Crit. Rev. Env. Sci. Technol. 5 2043
[15] Thorsteinsson T, Hackenbruch J, Sveinbjörnsson E, Jóhannsson T 2013 Geothermics 45 31Google Scholar
[16] Taira K, Sugiyama T, Einaga H, Nakao K, Suzuki K 2020 J. Catal. 389 611Google Scholar
[17] Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar
[18] Pal M, Maity A, Pradhan, M 2018 Laser Phys. 28 105702Google Scholar
[19] Klein A, Witzel O, Ebert V 2014 Sensors 14 21497Google Scholar
[20] Li Z Y, Hua R Z, Xie P H, Wang H C, Lu K D, Wang D 2018 Sci. Total Environ. 614 131
[21] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[22] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[23] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[24] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar
[25] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[26] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[27] McManus J B, Zahniser M S, Nelson, D D 2011 Appl. Opt. 50 A74Google Scholar
[28] 罗强, 唐斌, 张智, 冉曾令 2013 62 077101Google Scholar
Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101Google Scholar
[29] Allan D W 1966 Proc. IEEE 54 221Google Scholar
-
图 1 实验系统 (a) WM-DAS与 (b) CRDS. ISO, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; DAQ, 数据采集卡
Fig. 1. System schematic diagram of the (a) WM-DAS and (b) CRDS. ISO, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; DAQ, digital acquisition.
图 5 室温常压下两种方法测量的不同体积分数的H2S光谱及其拟合结果 (a) CRDS, 体积分数为1 × 10–7; (b) WM-DAS, 体积分数为1.912 × 10–3
Fig. 5. H2S spectra of different volume fraction measured by two methods at room temperature and pressure and their fitting results: (a) CRDS (the volume fraction is 1 × 10–7); (b) WM-DAS (the volume fraction is 1.912 × 10–3).
图 6 室温常压下, 在量程交集区域采用两种方法分别测量的不同体积分数(2 × 10–5—9.5 × 10–5) H2S吸收光谱及其最佳拟合结果 (a) CRDS, 去除了吸收系数基线以便比较; (b) WM-DAS
Fig. 6. At room temperature and pressure, the absorption spectra of H2S with different volume fraction (2 × 10–5–9.5 × 10–5) measured by two methods in the intersection area and their best fitting results: (a) CRDS, the baseline of the absorption coefficient measured by CRDS is removed for comparison; (b) WM-DAS.
图 8 (a) 基于WM-DAS和CRDS方法, 并利用计算的τ0实现1.2 × 10–7—1.912 × 10–3的H2S体积分数连续测量及其直方图; (b) 配置浓度与实测体积分数的关系及其最佳线性拟合, 以及拟合绝对残差(Res)和相对残差(RE)
Fig. 8. (a) Based on WM-DAS and CRDS, continuous measurement of volume fraction of H2S in a range of 1.2 × 10–7–1.912 × 10–3 by using calculated τ0 and the corresponding histogram analysis; (b) relationship between configuration concentration and measured volume fraction and its best linear fitting, as well as the fitting residual and the relative residual.
-
[1] Li R, C Warneke, Graus M, Field R, Geiger F, Veres P R, Soltis J, Li S M, Murphy S M, Sweeney C, Pétron G, Roberts J M, de Gouw J 2014 Atmos. Meas. Tech. 7 3597Google Scholar
[2] Saha C K, Feilberg A, Zhang G Q, Adamsen A P S 2011 Sci. Total Environ. 410–411 161
[3] Khan M A H, Whelan M E, Rhew R C 2012 Talanta 88 581Google Scholar
[4] Guo Y C, Qiu X B, Li N, Feng S L, Cheng T, Liu Q Q, He Q S, Kan R F, Yang H N, Li C L 2020 Infrared Phys. Technol. 105 103153Google Scholar
[5] Liu D, Feilberg A, Adamsen A P S, Jonassen K E N 2011 Atmos. Environ. 45 3786Google Scholar
[6] Pal M, Maithani S, Maity A, Pradhan M 2019 J. Anal. At. Spectrom. 34 860Google Scholar
[7] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer 224 197Google Scholar
[8] Zhao G, Tan W, Jia M Y, Hou J J, Ma W G, Dong L, Zhang L, Feng X X, Wu X C, Yin W B, Xiao L T, Axner O, Jia S T 2016 Sensors 16 1544Google Scholar
[9] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[10] Wang Z, Peng Z M, Ding Y J, Du Y J 2020 J. Opt. Soc. Am. B 37 1144Google Scholar
[11] Maity A, Pal M, Banik G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[12] McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar
[13] Mao L J, Cai M J, Liu Q Y, Wang G R, Wang X Y 2019 Energy Sci. Eng. 7 2596Google Scholar
[14] Ko J H, Xu Q Y, Jang Y C 2015 Crit. Rev. Env. Sci. Technol. 5 2043
[15] Thorsteinsson T, Hackenbruch J, Sveinbjörnsson E, Jóhannsson T 2013 Geothermics 45 31Google Scholar
[16] Taira K, Sugiyama T, Einaga H, Nakao K, Suzuki K 2020 J. Catal. 389 611Google Scholar
[17] Engel G S, Moyer E J 2007 Opt. Lett. 32 704Google Scholar
[18] Pal M, Maity A, Pradhan, M 2018 Laser Phys. 28 105702Google Scholar
[19] Klein A, Witzel O, Ebert V 2014 Sensors 14 21497Google Scholar
[20] Li Z Y, Hua R Z, Xie P H, Wang H C, Lu K D, Wang D 2018 Sci. Total Environ. 614 131
[21] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[22] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B 117 543Google Scholar
[23] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[24] Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Sensors 20 585Google Scholar
[25] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[26] 王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar
Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar
[27] McManus J B, Zahniser M S, Nelson, D D 2011 Appl. Opt. 50 A74Google Scholar
[28] 罗强, 唐斌, 张智, 冉曾令 2013 62 077101Google Scholar
Luo Q, Tang B, Zhang Z, Ran Z L 2013 Acta Phys. Sin. 62 077101Google Scholar
[29] Allan D W 1966 Proc. IEEE 54 221Google Scholar
计量
- 文章访问数: 3508
- PDF下载量: 75
- 被引次数: 0