Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principle study on gas sensor mechanism of black-AsP monolayer

Xu Qiang Duan Kang Xie Hao Zhang Qin-Rong Liang Ben-Quan Peng Zhen-Kai Li Wei

Citation:

First principle study on gas sensor mechanism of black-AsP monolayer

Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei
PDF
HTML
Get Citation
  • Since the successful synthesis of graphene, two-dimensional materials, including hexagonal boron nitride and transition mental dichalcogenides, have attracted wide attention due to their extraordinary properties and extensive applications. Recent researches have revealed that the sensing system based on graphene or MoS2 can efficiently sense various gas molecules. However, the utility of these materials is limited by their inherent weakness, i.e. the zero bandgap in graphene and the relatively low mobility in MoS2, which impede their applications in electronic devices. This further stimulates the motivation of researchers to find more novel 2D materials. Black arsenic phosphide (AsP) monolayer, a novel two-dimensional nanomaterial with the characteristics of model direct bandgap and superhigh carrier mobility, is an ideal material for gas sensor. Here in this work, we investigate the electronic and magnetic properties of monolayer AsP absorbed with small gas molecules by using first-principle calculations based on density functional theory. Four initial absorption sites are selected to explore the optimal absorption positions of CO, CO2, NH3, SO2, NO and NO2 absorbed on the monolayer AsP. The purpose is to calculate the optimal absorption configurations, the absorption energy, absorption distance, and charge transfer, thereby investigating the absorption types. The results revel that the monolayer AsP is sensitive to NO2 gas and SO2 gas via strong physical absorption, and NO gas by chemical absorption, forming a new bond between N atom and O atom. The CO, CO2 and NH3 gas are absorbed on AsP monolayer with weak van Waals force. From the point of view of charge transfer, the CO, CO2, and NH3 molecules are one order of magnitude smaller than SO2, NO and NO2, approximately 0.03e and the charge transfer of NO gas is 0.21e, highest in all gases. Besides, the effects of absorption on the electrons of AsP are investigated. The results show that the absorption of CO, CO2 and NH3 molecules have little effect on band structure, and that the absorption of SO2 molecule increases the bandgap. The absorption of magnetic gas NO and NO2 reduce the bandgap by introducing impurity level near Fermi level, giving rise to their magnetic moments of 0.83μB and 0.78μB and making the whole system magnetic. Theoretical research shows that monolayer AsP is sensitive to NO, NO2 and SO2 gas molecules, which provides theoretical guidance for the experimental preparation of gas sensors band on black arsenic phosphorus.
      Corresponding author: Li Wei, liw@njupt.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2018T110480), the Natural Science Foundation of Institutions of Higher Education of Jiangsu Province, China (Grant No. 20KJA510001), the Open Fund of State Key Laboratory of Luminescent Materials and Devices of South China of Technology, China (Grant No. 2020-skllmd-03), the Open Fund of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K202003), the Open Fund of State Key Laboratory of Solid Microstructure Physics of Nanjing University, China (Grant No. M32001), and the Open Fund of Jiangsu Optical Communication Engineering Technology Research Center, China (Grant No. ZXF201904)
    [1]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622Google Scholar

    [2]

    Bao H, Yu S, Tong D Q 2010 Nature 465 909Google Scholar

    [3]

    Esrafili M D 2019 Phys. Lett. A 383 1607Google Scholar

    [4]

    Chen X, Shen Y, Zhou P, Zhao S, Zhong X, Li T, Han C, Wei D, Meng D 2019 Sens. Actuators, B 280 151Google Scholar

    [5]

    Li W, Ding C, Li J, Ren Q, Bai G, Xu J 2020 Appl. Surf. Sci. 502 144140Google Scholar

    [6]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [9]

    Xia W, Hu W, Li Z, Yang J 2014 Phys. Chem. Chem. Phys. 16 22495Google Scholar

    [10]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [11]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442Google Scholar

    [12]

    Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K 2015 Nano Lett. 15 2852Google Scholar

    [13]

    Tian X Q, Liu L, Wang X R, Wei Y D, Gu J, Du Y, Yakobson B I 2017 J. Mater. Chem. C 5 1463Google Scholar

    [14]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317Google Scholar

    [17]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [18]

    Eswaraiah V, Zeng Q, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [19]

    Jyothi M S, Nagarajan V, Chandiramouli R 2020 Chem. Phys. 538 110896Google Scholar

    [20]

    Kou L, Frauenheim T, Chen C 2014 J. Phys. Chem. Lett. 5 2675Google Scholar

    [21]

    Osters O, Nilges T, Bachhuber F, Pielnhofer F, Weihrich R, Schöneich M, Schmidt P 2012 Angew. Chem. Int. Ed. 51 2994Google Scholar

    [22]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [23]

    Jing Y, Ma Y, Li Y, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [24]

    Niu F, Cai M, Pang J, Li X, Yang D, Zhang G 2019 Vacuum 168 108823Google Scholar

    [25]

    Zhu Z, Guan J, Liu D, Tománek D 2015 ACS Nano 9 8284Google Scholar

    [26]

    Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H 2019 Adv. Mater. 31 e1902352Google Scholar

    [27]

    He Y, Xiong S, Xia F, Shao Z, Zhao J, Zhang X, Jie J, Zhang X 2018 Phys. Rev. B 97 085119Google Scholar

    [28]

    Kocabas T, Cakir D, Gulseren O, Ay F, Kosku Perkgoz N, Sevik C 2018 Nanoscale 10 7803Google Scholar

    [29]

    Liu X, Ni Y X, Wang H Y, Wang H 2020 Chin J. Chem. Phys. 33 311Google Scholar

    [30]

    Tang J P, Xiao W Z, Wang L L 2018 Mater. Sci. Eng., B 228 206Google Scholar

    [31]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [32]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [33]

    Krebs H, Holz W, Worms K H 1957 Chem. Ber. 90 1031Google Scholar

    [34]

    Yu W, Niu C Y, Zhu Z, Wang X, Zhang W B 2016 J. Mater. Chem. C 4 6581Google Scholar

    [35]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [36]

    Imai Y, Mukaida M, Tsunoda T 2001 Thin Solid Films 381 176Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [40]

    Hirshfeld F L 1977 Theor. Chim. Acta 44 129Google Scholar

    [41]

    Liu C, Liu C S, Yan X 2017 Phys. Lett. A 381 1092Google Scholar

    [42]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [43]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [44]

    Bai L, Zhou Z 2007 Carbon 45 2105Google Scholar

    [45]

    Lee S Y, Ito E, Kang H, Hara M, Lee H, Noh J 2014 J. Phys. Chem. C 118 8322Google Scholar

  • 图 1  (a)黑磷砷的顶部和侧面图; (b) 本征黑磷砷的能带图

    Figure 1.  (a) Illustration of top and side view of AsP monolayer; (b) electronic band of pristine AsP.

    图 2  (a) 4个不同吸附点位图; (b) CO, (c) CO2, (d) NH3, (e) SO2, (f) NO, (g) NO2气体在单层AsP上的吸附图

    Figure 2.  (a) Schematic diagram of four different absorption sites; the most favorable configurations of monolayer AsP with (b) CO, (c) CO2, (d) NH3, (e) SO2, (f) NO and (g) NO2 absorption.

    图 3  CO, CO2, NH3, SO2, NO, NO2与单层AsP之间的吸附距离和吸附能

    Figure 3.  Absorption distance and absorption energy for CO, CO2, NH3, SO2, NO and NO2 on AsP monolayer.

    图 4  (a) CO, (b) CO2, (c) NH3和(d) SO2吸附在单层AsP表面的能带结构; (e), (f) NO和 (g), (h) NO2吸附在单层AsP表面的能带结构图, 其中黑线和蓝线分别表示自旋向上和自旋向下的能带结构

    Figure 4.  Band structure of (a) CO, (b) CO2, (c) NH3 and (d) SO2 absorbed on AsP monolayer; the band structure of (e), (f) NO and (g), (h) NO2 absorbed on AsP monolayer, where the black and blue line represent the band structure of spin-up and spin-down, respectively.

    图 5  (a) CO, (b) CO2, (c) NH3, (d) SO2, (e) NO和(f) NO2吸附在单层AsP上的态密度和分态密度图, 其中黑线和红线分别是原始AsP的态密度和吸附气体后的态密度图

    Figure 5.  Density of states (DOS) of (a) CO, (b) CO2, (c) NH3, (d) SO2, (e) NO and (f) NO2 absorbed on AsP monolayer, respectively. The black and red line represent the DOS of pristine AsP and gases absorbed on AsP.

    表 1  不同气体吸附的吸附能、转移电荷数量、气体分子的磁矩和恢复时间, 括号里数值是与Mulliken分析法对比的结果

    Table 1.  The absorption energy (Ead), the charge transfer from basic material to gas molecule (ρ), the local magnetic on gas molecule (Spin) and the recovery time (τ) for gas desorption from material. The values in brackets are the results of comparison with Mulliken analysis.

    气体Ead /eVρ/eSpin/ μBτ/s
    CO–0.135–0.03 (0.02)01.8 × 10–10
    CO2–0.156–0.01 (–0.04)04.03 × 10–10
    NH3–0.131–0.02 (–0.04)01.5 × 10–10
    SO2–0.363–0.15 (0.05)01.2 × 10–6
    NO–0.79–0.21 (–0.20)0.8315.7
    NO2–0.46–0.14 (–0.01)0.784.8 × 10–5
    DownLoad: CSV
    Baidu
  • [1]

    Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K, Dai H 2000 Science 287 622Google Scholar

    [2]

    Bao H, Yu S, Tong D Q 2010 Nature 465 909Google Scholar

    [3]

    Esrafili M D 2019 Phys. Lett. A 383 1607Google Scholar

    [4]

    Chen X, Shen Y, Zhou P, Zhao S, Zhong X, Li T, Han C, Wei D, Meng D 2019 Sens. Actuators, B 280 151Google Scholar

    [5]

    Li W, Ding C, Li J, Ren Q, Bai G, Xu J 2020 Appl. Surf. Sci. 502 144140Google Scholar

    [6]

    丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋 2018 67 213102Google Scholar

    Ding C, Li W, Liu J Y, Wang L L, Cai Y, Pan P F 2018 Acta Phys. Sin. 67 213102Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Mousavi H 2011 Commun. Theor. Phys. 56 373Google Scholar

    [9]

    Xia W, Hu W, Li Z, Yang J 2014 Phys. Chem. Chem. Phys. 16 22495Google Scholar

    [10]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [11]

    Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, Duan W 2008 J. Phys. Chem. C 112 13442Google Scholar

    [12]

    Sarkar D, Xie X, Kang J, Zhang H, Liu W, Navarrete J, Moskovits M, Banerjee K 2015 Nano Lett. 15 2852Google Scholar

    [13]

    Tian X Q, Liu L, Wang X R, Wei Y D, Gu J, Du Y, Yakobson B I 2017 J. Mater. Chem. C 5 1463Google Scholar

    [14]

    Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504Google Scholar

    [15]

    Yuan W, Shi G 2013 J. Mater. Chem. A 1 10078Google Scholar

    [16]

    Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317Google Scholar

    [17]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [18]

    Eswaraiah V, Zeng Q, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [19]

    Jyothi M S, Nagarajan V, Chandiramouli R 2020 Chem. Phys. 538 110896Google Scholar

    [20]

    Kou L, Frauenheim T, Chen C 2014 J. Phys. Chem. Lett. 5 2675Google Scholar

    [21]

    Osters O, Nilges T, Bachhuber F, Pielnhofer F, Weihrich R, Schöneich M, Schmidt P 2012 Angew. Chem. Int. Ed. 51 2994Google Scholar

    [22]

    Yang A, Wang D, Wang X, Zhang D, Koratkar N, Rong M 2018 Nano Today 20 13Google Scholar

    [23]

    Jing Y, Ma Y, Li Y, Heine T 2017 Nano Lett. 17 1833Google Scholar

    [24]

    Niu F, Cai M, Pang J, Li X, Yang D, Zhang G 2019 Vacuum 168 108823Google Scholar

    [25]

    Zhu Z, Guan J, Liu D, Tománek D 2015 ACS Nano 9 8284Google Scholar

    [26]

    Guo S, Zhang Y, Ge Y, Zhang S, Zeng H, Zhang H 2019 Adv. Mater. 31 e1902352Google Scholar

    [27]

    He Y, Xiong S, Xia F, Shao Z, Zhao J, Zhang X, Jie J, Zhang X 2018 Phys. Rev. B 97 085119Google Scholar

    [28]

    Kocabas T, Cakir D, Gulseren O, Ay F, Kosku Perkgoz N, Sevik C 2018 Nanoscale 10 7803Google Scholar

    [29]

    Liu X, Ni Y X, Wang H Y, Wang H 2020 Chin J. Chem. Phys. 33 311Google Scholar

    [30]

    Tang J P, Xiao W Z, Wang L L 2018 Mater. Sci. Eng., B 228 206Google Scholar

    [31]

    Xiao W Z, Xiao G, Rong Q Y, Wang L L 2018 Mater. Res. Express 5 035903Google Scholar

    [32]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [33]

    Krebs H, Holz W, Worms K H 1957 Chem. Ber. 90 1031Google Scholar

    [34]

    Yu W, Niu C Y, Zhu Z, Wang X, Zhang W B 2016 J. Mater. Chem. C 4 6581Google Scholar

    [35]

    Xie M, Zhang S, Cai B, Huang Y, Zou Y, Guo B, Gu Y, Zeng H 2016 Nano Energy 28 433Google Scholar

    [36]

    Imai Y, Mukaida M, Tsunoda T 2001 Thin Solid Films 381 176Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [39]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299Google Scholar

    [40]

    Hirshfeld F L 1977 Theor. Chim. Acta 44 129Google Scholar

    [41]

    Liu C, Liu C S, Yan X 2017 Phys. Lett. A 381 1092Google Scholar

    [42]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [43]

    Abbas A N, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C 2015 ACS Nano 9 5618Google Scholar

    [44]

    Bai L, Zhou Z 2007 Carbon 45 2105Google Scholar

    [45]

    Lee S Y, Ito E, Kang H, Hara M, Lee H, Noh J 2014 J. Phys. Chem. C 118 8322Google Scholar

  • [1] Ge Yi-Xuan, Yu Ting-Ting, Liang Wen-Jie. Preparation of ultra-sensitive and highly specific miniature hydrogen sensors by in situ synthesis methods. Acta Physica Sinica, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [2] Zhao Jun, Yao Can, Zeng Hui. Theoretical study of adsorption properties and electrical transport performance of toxic gas molecules on novel orthorhombic BN monolayer semiconductor. Acta Physica Sinica, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [3] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [4] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [5] Dong Yi-Meng, Sun Yong-Jiao, Hou Yu-Chen, Wang Bing-Liang, Lu Zhi-Yuan, Zhang Wen-Dong, Hu Jie. Preparation and room-temperature NO2 sensitivity of SnO2/ZnS heterojunctions gas sensor. Acta Physica Sinica, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [6] Zhang Ru-Xuan, Zong Xiao-Hang, Yu Ting-Ting, Ge Yi-Xuan, Hu Shi, Liang Wen-Jie. Detection and identification of gas components based on nano sensor array. Acta Physica Sinica, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [7] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [8] Zhang Guo-Ying, Jiao Xing-Qiang, Liu Ye-Shu, Zhang An-Guo, Meng Chun-Xue. Electronic theoretical study on sensing behaviors of defects and doping coexistence of black phosphorene to formaldehyde. Acta Physica Sinica, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [9] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [10] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [11] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [12] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [13] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [14] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [15] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [16] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [17] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [18] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [19] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  7047
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2020
  • Accepted Date:  16 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回
Baidu
map