Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity

Li Zeng-Hui Li Shu-Guang Li Jian-She Wang Lu-Yao Wang Xiao-Kai Wang Yan Gong Lin Cheng Tong-Lei

Citation:

Double-trench assisted thirteen-core five-mode fibers with low crosstalk and low non-linearity

Li Zeng-Hui, Li Shu-Guang, Li Jian-She, Wang Lu-Yao, Wang Xiao-Kai, Wang Yan, Gong Lin, Cheng Tong-Lei
PDF
HTML
Get Citation
  • Information technology has an increasingly strong demand for high-speed and large-capacity optical fiber networks. Space division multiplex(SDM) is a new generation of optical fiber communication technology which can be several times in communication capacity higher than the wavelength division multiplexing systems. In this paper, we present a kind of 13-core 5-mode fiber with double trench structure to meet the demand for high-speed and large-capacity information transmission in the future. In order to solve the crosstalk problem in SDM, a double-trench structure is adopted to better limit the light energy in the fiber core, thus reducing the crosstalk between cores and modes. The crosstalk and transmission characteristics of multi-core fiber are calculated and analyzed by the full vector finite element method and coupled power theory. After the optimization of structural parameters, the fiber can stably transmit LP01, LP11, LP21, LP02 and LP31 in the band of 1.3–1.7 μm; when the signal is transmitted at the 1.55 μm for 60 km, the inter-core crosstalks corresponding to the adjacent fiber cores in the above five modes are –122.37 dB, –114.76 dB, –106.28 dB, –100.68 dB and –92.813 dB, respectively; the effective refractive index difference between adjacent modes is greater than 1.026 × 10–3; inter-core and inter-mode crosstalk can be effectively suppressed. The corresponding non-linear coefficients of the 5-modes are 0.74 W–1·km–1, 0.82 W–1·km–1, 0.88 W–1·km–1, 1.26 W–1·km–1, 0.93 W–1·km–1, which can maintain low non-linear transmission. The structure of fiber is simple and compact, and the preform can be fabricated by vapor deposition method and stack method, then the 13-core five-mode fiber with low crosstalk and low nonlinear can be further drawn, which can be used in a long distance high-speed and large-capacity fiber transmission system.
      Corresponding author: Li Shu-Guang, shuguangli@ysu.edu.cn
    • Funds: Project is supported by the National Key Research and Development Project, China (Grant No. 2019YFB2204001), the National Natural Science Foundation of China (Grant No.12074331), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2017203193, F2020203050, F2017203110), and the Postdoctoral Preferred Funding Research Project of Hebei Province, China (Grant No. B2018003008)
    [1]

    张伟, 陈鹤鸣 2017 光通信研究 4 26Google Scholar

    Zhang W, Chen H M 2017 Study on Optical Communications 4 26Google Scholar

    [2]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saltoh K, Koshiba M 2011 IEICE Trans. Commun. E94B 409Google Scholar

    [3]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T, Li J 2020 Opt. Commun. 474 126155Google Scholar

    [4]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Lightwave Technol. 36 1226Google Scholar

    [5]

    Mori T, Sakamoto T, Wada M, Yamamoto T, Yamamoto F 2014 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, CA Mar. 09–13, 2014

    [6]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [7]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [8]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [9]

    涂佳静, 乔喜慧, 隆克平 2017 光子学报 46 0106001Google Scholar

    Tu J J, Qiao X H, Long K P 2017 Acta Photon. Sin. 46 0106001Google Scholar

    [10]

    郑斯文 2014 博士学位论文 (北京: 北京交通大学)

    Zheng S W 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC) Los Angeles, CA Mar. 06–10, 2011

    [12]

    Koshiba M, Saitoh K, Kokubun Y 2009 IEICE Electron. Express 6 98Google Scholar

    [13]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [14]

    徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 64 234206Google Scholar

    Xu M N, Zhou G Y, Chen C, Hou Z Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W 2015 Acta Phys. Sin. 64 234206Google Scholar

    [15]

    姜姗姗, 刘艳, 邢尔军 2015 64 064212Google Scholar

    Jang S S, Liu Y, Xing E J, 2015 Acta Phys. Sin. 64 064212Google Scholar

    [16]

    裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶 2018 红外与激光工程 10 35Google Scholar

    Pei L, Wang J S, Zheng J J, Ning T G, Xie Y H, He Q, Li J 2018 Infrared and Laser Engineering 10 35Google Scholar

    [17]

    曹原, 施伟华, 郁小松, 赵永利, 张杰 2017 光子学报 46 45Google Scholar

    Cao Y, Shi W H, Yu X S, Zhao Y L, Zhang J 2017 Acta Photon. Sin. 46 45Google Scholar

    [18]

    Gruner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen KG, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693Google Scholar

    [19]

    赵佳佳 2018 博士学位论文 (武汉: 华中科技大学)

    Zhao J J 2018 Ph. D. Dissertation (Wuhan: Huazhong University Science and Technology) (in Chinese)

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Dissertation (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Qiu J C, Liu H K, Tian X X 2008 Acta Photon. Sin. 37 297

    [22]

    Wang W C, Sun C Y, Wang N, Jia H Z 2020 Opt. Commun. 471 125823Google Scholar

    [23]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 2012 IEEE Photonics Society Summer Topical Meeting Series Seattle, WA, USA August 27 2012 p191

    [24]

    Begum F, Namihira Y, Razzak SMA, Kaijage S, Miyagi K, Hai NH, Zou N 2007 Opt. Rev. 14 120Google Scholar

    [25]

    Liu M, Yang J, Zhu T 2015 JETP Letters 102 274Google Scholar

    [26]

    Wan X, Wang Z Q, Sun B, Zhang Z X 2020 Opt. Quantum Electron. 52 289Google Scholar

  • 图 1  双沟槽环绕型十三芯五模光纤结构

    Figure 1.  Schematic structure of a double-trench assisted 13-core 5-LP mode fiber.

    图 2  相邻纤芯折射率分布

    Figure 2.  Refractive index profile of adjacent fiber-core.

    图 3  具有横向随机波动的两相邻纤芯之间的串扰

    Figure 3.  Crosstalk between two adjacent cores with random fluctuation along longitudinal direction.

    图 4  无/单/双沟槽结构中LP01模式的芯间串扰对比

    Figure 4.  No/single/double trench structure crosstalk contrast of LP01 mode.

    图 5  Δ2 = –0.01时芯间串扰与沟槽宽度的关系

    Figure 5.  Relation between crosstalk and trench width at Δ2 = –0.01.

    图 6  c1, c2 = 4 μm时串扰和Δ2的关系

    Figure 6.  Relation between crosstalk and Δ2 at c1, c2 = 4 μm.

    图 7  在∆1 = 0.015, 波长1.55 μm处5个模式的串扰、AeffΔneff与芯区大小的关系 (a)芯区大小和串扰的关系; (b)芯区大小和Aeff的关系; (c)芯区大小和模式折射率差的关系

    Figure 7.  The relationship between crosstalk, Aeff, Δneff of five modes and core size at 1.55 μm: (a) The relationship between core size and crosstalk; (b) the relationship between core size and Aeff; (c) the relationship between core size and Δneff.

    图 8  在1.55 μm处5个模式的芯间串扰、Aeff和∆neff与芯区相对折射率差Δ1的关系 (a) Δ1和芯间串扰的关系; (b) Δ1Aeff的关系; (c) Δ1和模式折射率差的关系

    Figure 8.  . The relationship between crosstalk, Aeff, ∆neff of five modes and Δ1 at 1.55 μm: (a) The relationship between Δ1 and crosstalk; (b) The relationship between Δ1 and Aeff; (c) The relationship between Δ1 and ∆neff.

    图 9  5-LP横向模式剖面

    Figure 9.  Transverse mode profile for 5-LP modes.

    图 10  双沟槽十三芯五模光纤芯间串扰与波长关系

    Figure 10.  Relation between wavelength and core-to-core crosstalk for the double-trench assisted 13-core 5-LP mode fiber.

    图 11  5个LP模式之间的∆neff和MDGD与波长的关系 (a) ∆neff与波长的关系; (b)相邻模式之间差分群时延与波长的关系

    Figure 11.  The relationship between ∆neff, MDGD of five modes and wavelength: (a) The relationship between ∆neff and wavelength; (b) the relationship between ∆neff and wavelength.

    图 12  5个LP模式的有效模面积Aeff和非线性系数γ与波长的关系 (a) 有效模面积Aeff与波长的关系; (b)非线性系数γ与波长的关系

    Figure 12.  The relationship between Aeff, γ of five modes and wavelength: (a) The relationship between Aeff and wavelength; (b) the relationship between γ and wavelength.

    图 13  5-LP的色散与波长的关系

    Figure 13.  Relation between dispersion and wavelength for 5-LP modes.

    表 1  光纤初始参数

    Table 1.  The initial fiber parameters

    a/μmb1/μmb2/μmc1/μmc2/μmΛ/μmR/μmΔ1Δ2
    62254421000.017–0.01
    DownLoad: CSV

    表 2  光纤优化参数

    Table 2.  The optimal fiber performance.

    a/μmb1/μmb2/μmc1/μmc2/μmΛ/μmR/μmΔ1Δ2
    82244421000.015–0.008
    DownLoad: CSV

    表 3  5个LP模式的串扰、有效模面积和MDGD(LPmn–LP01)

    Table 3.  Estimated values of crosstalk, effective area and MDGD(LPmn–LP01) for 5-LP modes at 1.55 μm.

    ModesCrosstalk/
    (dB/60 km)
    Aeff /μm2MDGD/
    (ps·m–1)
    LP01–122.371470
    LP11–114.761345.855
    LP21–106.2812513.452
    LP02–100.688715.799
    LP31–92.8111822.314
    DownLoad: CSV
    Baidu
  • [1]

    张伟, 陈鹤鸣 2017 光通信研究 4 26Google Scholar

    Zhang W, Chen H M 2017 Study on Optical Communications 4 26Google Scholar

    [2]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saltoh K, Koshiba M 2011 IEICE Trans. Commun. E94B 409Google Scholar

    [3]

    Xie Y H, Pei L, Zheng J J, Zhao Q, Ning T, Li J 2020 Opt. Commun. 474 126155Google Scholar

    [4]

    Sakamoto T, Saitoh K, Saitoh S, Shibahara K, Wada M, Abe Y, Urushibara A, Takenaga K, Mizuno T, Matsui T, Aikawa K, Miyamoto Y, Nakajima K 2018 J. Lightwave Technol. 36 1226Google Scholar

    [5]

    Mori T, Sakamoto T, Wada M, Yamamoto T, Yamamoto F 2014 Optical Fiber Communications Conference and Exhibition (OFC) San Francisco, CA Mar. 09–13, 2014

    [6]

    Kumar D, Ranjan R 2018 Opt. Fiber Technol. 41 95Google Scholar

    [7]

    Sasaki Y, Takenaga K, Matsuo S, Aikawa K, Saitoh K 2017 Opt. Fiber Technol. 35 19Google Scholar

    [8]

    苑立波 2019 激光与光电子学进展 56 170612Google Scholar

    Yuan L B 2019 Laser. Opt. Pro. 56 170612Google Scholar

    [9]

    涂佳静, 乔喜慧, 隆克平 2017 光子学报 46 0106001Google Scholar

    Tu J J, Qiao X H, Long K P 2017 Acta Photon. Sin. 46 0106001Google Scholar

    [10]

    郑斯文 2014 博士学位论文 (北京: 北京交通大学)

    Zheng S W 2014 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [11]

    Takenaga K, Arakawa Y, Tanigawa S, Guan N, Matsuo S, Saitoh K, Koshiba M 2011 Conference on Optical Fiber Communication (OFC) Los Angeles, CA Mar. 06–10, 2011

    [12]

    Koshiba M, Saitoh K, Kokubun Y 2009 IEICE Electron. Express 6 98Google Scholar

    [13]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Linares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [14]

    徐闵喃, 周桂耀, 陈成, 侯峙云, 夏长明, 周概, 刘宏展, 刘建涛, 张卫 2015 64 234206Google Scholar

    Xu M N, Zhou G Y, Chen C, Hou Z Y, Xia C M, Zhou G, Liu H Z, Liu J T, Zhang W 2015 Acta Phys. Sin. 64 234206Google Scholar

    [15]

    姜姗姗, 刘艳, 邢尔军 2015 64 064212Google Scholar

    Jang S S, Liu Y, Xing E J, 2015 Acta Phys. Sin. 64 064212Google Scholar

    [16]

    裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶 2018 红外与激光工程 10 35Google Scholar

    Pei L, Wang J S, Zheng J J, Ning T G, Xie Y H, He Q, Li J 2018 Infrared and Laser Engineering 10 35Google Scholar

    [17]

    曹原, 施伟华, 郁小松, 赵永利, 张杰 2017 光子学报 46 45Google Scholar

    Cao Y, Shi W H, Yu X S, Zhao Y L, Zhang J 2017 Acta Photon. Sin. 46 45Google Scholar

    [18]

    Gruner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen KG, Lingle R, Palsdottir B 2012 J. Lightwave Technol. 30 3693Google Scholar

    [19]

    赵佳佳 2018 博士学位论文 (武汉: 华中科技大学)

    Zhao J J 2018 Ph. D. Dissertation (Wuhan: Huazhong University Science and Technology) (in Chinese)

    [20]

    刘俊彦 2015 硕士学位论文 (北京: 北京邮电大学)

    Liu J Y 2015 M. S. Dissertation (Beijing: Beijing Youdian University) (in Chinese)

    [21]

    Qiu J C, Liu H K, Tian X X 2008 Acta Photon. Sin. 37 297

    [22]

    Wang W C, Sun C Y, Wang N, Jia H Z 2020 Opt. Commun. 471 125823Google Scholar

    [23]

    Takenaga K, Sasaki Y, Guan N, Matsuo S, Kasahara M, Saitoh K, Koshiba M 2012 2012 IEEE Photonics Society Summer Topical Meeting Series Seattle, WA, USA August 27 2012 p191

    [24]

    Begum F, Namihira Y, Razzak SMA, Kaijage S, Miyagi K, Hai NH, Zou N 2007 Opt. Rev. 14 120Google Scholar

    [25]

    Liu M, Yang J, Zhu T 2015 JETP Letters 102 274Google Scholar

    [26]

    Wan X, Wang Z Q, Sun B, Zhang Z X 2020 Opt. Quantum Electron. 52 289Google Scholar

  • [1] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] Guo Jian-Fei, Li Hao, Wang Zi-Ming, Zhong Ming-Hao, Chang Shuai-Jun, Ou Shu-Ji, Ma Hai-Lun, Liu Li. Failure mechanism of double-trench (DT) 4H-SiC power MOSFET under unclamped inductive switch test. Acta Physica Sinica, 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [3] Wang Jian, Wu Chong-Qing. Analysis and optimization of few-mode fibers with low differential mode group delay by variational method. Acta Physica Sinica, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [4] Zhang Yuan, Jiang Wen-Fan, Chen Ming-Yang. Design of ring-core few-mode multi-core fiber with low crosstalk and low bending loss. Acta Physica Sinica, 2022, 71(9): 094205. doi: 10.7498/aps.71.20211534
    [5] Ma Li-Ling, Li Shu-Guang, Li Jian-She, Meng Xiao-Jian, Li Zeng-Hui, Wang Lu-Yao, Shao Peng-Shuai. A kind of single trench 19-core single-mode heterogeneous fiber with low crosstalk and anti-bending performance. Acta Physica Sinica, 2022, 71(10): 104206. doi: 10.7498/aps.71.20212221
    [6] Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang. A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation. Acta Physica Sinica, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [7] A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210974
    [8] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [9] Preface to the special topic: Nonlinear optics and devices of low-dimensional materials. Acta Physica Sinica, 2020, 69(18): 180101. doi: 10.7498/aps.69.180101
    [10] Sun Ya-Xiu, Zhuo Qing-Kun, Jiang Qing-Hui, Li Qian. New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory. Acta Physica Sinica, 2015, 64(4): 044102. doi: 10.7498/aps.64.044102
    [11] Chen Xue-Mei, Zhang Jing, Yi Xing-Wen, Zeng Deng-Ke, Yang He-Ming, Qiu Kun. Fiber nonlinearity tolerance research of coherent optical orthogonal frequency division multiplexed system based on digital coherent superposition. Acta Physica Sinica, 2015, 64(14): 144203. doi: 10.7498/aps.64.144203
    [12] Jiang Shan-Shan, Liu Yan, Xing Er-Jun. Finite element analysis and design of few mode fiber with low differential mode delay. Acta Physica Sinica, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [13] Xu Min-Nan, Zhou Gui-Yao, Chen Cheng, Hou Zhi-Yun, Xia Chang-Ming, Zhou Gai, Liu Hong-Zhan, Liu Jian-Tao, Zhang Wei. Analysis of a novel four-mode micro-structured fiber with low-level crosstalk and high mode differential group delay. Acta Physica Sinica, 2015, 64(23): 234206. doi: 10.7498/aps.64.234206
    [14] Zhang Ya-Ni. Design and optimization of low-loss low-nonlinear high negative-dispersion photonic crystal fiber. Acta Physica Sinica, 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [15] Tan Zhong-Wei, Cao Ji-Hong, Chen Yong, Liu Yan, Ning Ti-Gang, Jian Shui-Sheng. Multi-wavelength dispersion compensator based on fiber gratings with low crosstalk. Acta Physica Sinica, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [16] Shen Shou-Feng. General multi-linear variable separation approach to solving low dimensional nonlinear systems and localized exitations. Acta Physica Sinica, 2006, 55(3): 1011-1015. doi: 10.7498/aps.55.1011
    [17] Wang Zheng-Ping, Teng Bing, Du Chen-Lin, Xu Xin-Guang, Fu Kun, Xu Gui-Bao, Wang Ji-Yang, Shao Zong-Shu. Frequency doubling property of the low symmetric nonlinear optical crystal BIBO. Acta Physica Sinica, 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [18] GUO RU, LI YI-GANG, PAN SHI-HONG. ENHANCED CASCADING NONLINEARITIES. Acta Physica Sinica, 2001, 50(6): 1087-1091. doi: 10.7498/aps.50.1087
    [19] FANG QIAN-FENG. NUMERICAL ANALYSIS OF THE NONLINEAR ANELASTIC INTERNAL FRICTION PEAK (P′1 PEAK) UNDERLOW STRESS AMPLITUDE. Acta Physica Sinica, 1997, 46(3): 536-543. doi: 10.7498/aps.46.536
    [20] LI DA-FENG, MA ZHONG-FANG, CHEN JI. THE TWO-DIMENSIONAL NONLINEAR EFFECTS OF PONDEROMOTIVE FORCE OF LOWER HYBRID WAVE. Acta Physica Sinica, 1982, 31(2): 170-179. doi: 10.7498/aps.31.170
Metrics
  • Abstract views:  5171
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2020
  • Accepted Date:  30 December 2020
  • Available Online:  09 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map