-
The dense plasma produced by a coaxial gun possesses an extremely high velocity (~100 km/s), electron density (~1016 cm–3) and energy density (~1 MJ/m2), which has great potential applications in fusion energy, astrophysics and aerospace physics. Through the measurements of electrical and optical signals, as well as the temporal and spatial evolution of the ejected plasma, the plasma characteristics of two different outer electrodes in length are investigated. As the outer electrode is lengthened, the axial velocity, the collimation and the propagation distance of plasma are all enhanced while the electron density and the optical intensity decrease, this can be ascribed to the extension of plasma column formed by Z-pinch on the central electrode during the discharge. When moving across the end of the inner electrode, the plasma sheet can be stretched into a bow shape due to the Coulomb and Lorentz force. With the appearance of axial current, part of the plasma sheet near the head of the inner electrode converges toward the center, and then generates a plasma column with much higher electron density and temperature. On the one hand, the extending of the plasma column can match the outer electrode in length and therefore the plasma column gains longer accelerating time in the coaxial gun resulting in the growing of ejected velocity. On the other hand, it also brings higher losses of the charged particles and recombination rates between the plasma and the wall of electrodes, resulting in the decrease of electron density and optical intensity. Moreover, the axial kinetic energy, the electron density and the radial Lorentz force of ejected plasma are jointly responsible for the collimation and the attenuation characteristics in its propagation. As the axial velocity and electron density increase, the axial kinetic energy of ejected plasma increases, which induces a longer propagating distance. In contrast, with the electron density and radial Lorentz force growing, the density gradient and thermal expansion of ejected plasma are enhanced correspondingly, leading the energy density to decrease and finally the propagating distance to shorten. In conclusion, a high collimation plasma jet trends to generate in a high axial velocity, electron density and with a relatively long outer electrode.
-
Keywords:
- coaxial gun /
- dense plasma /
- z-pinch /
- collimation /
- plasma column
[1] Marshall J 1960 Phys. Fluids 3 134
[2] Hagerman D C, Osher J E 1963 Rev. Sci. Instrum. 34 56Google Scholar
[3] Subramaniam V, Raja L L 2017 Phys. Plasmas 24 062507Google Scholar
[4] Cheng D Y 1971 AIAA J. 9 1681Google Scholar
[5] Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar
[6] Wang M Y, Choi C K, Mead F B 1992 9th Symp on Space Nuclear Power Systems Albuquerque NM, January 12–16, 1992 p30
[7] Bellan P M, You S, Hsu S C 2005 Astrophys. Space Sci. 298 203Google Scholar
[8] Bellan P M 2005 Phys. Plasmas 12 058301Google Scholar
[9] Golingo R P, Shumlak U, Nelson B A 2005 Phys. Plasmas 12 062505Google Scholar
[10] Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008 Phys. plasmas 15 103701Google Scholar
[11] Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar
[12] Underwood T C, Loebner K T, Cappelli A 2017 High Energy Density Phys. 23 73Google Scholar
[13] Hart P J 1962 Phys. Fluids. 5 38Google Scholar
[14] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar
[15] Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar
[16] Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506Google Scholar
[17] Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar
[18] Milanese M M, Niedbalski J, Moroso R L 2007 IEEE Trans. Plasma Sci. 35 808Google Scholar
[19] Lie T N, Rhee M J, Chang C C 1967 AIAA 67 1
[20] Michels C J, Ramins P 1964 Phys. Fluids 7 71Google Scholar
[21] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[22] Gloersen P, Gorowitz B 1966 AIAA J. 4 436Google Scholar
[23] Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287Google Scholar
[24] 余鑫, 漆亮文, 赵崇霄, 任春生 2020 69 035202Google Scholar
Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar
[25] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar
[26] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[27] Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar
[28] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21
[29] Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar
[30] Lie T N, Ali A W, Mclean E A, Kolb A C 1967 Phys. Fluids 10 1545Google Scholar
[31] Markusic T E, Thio Y C F 2002 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7–10, 2002 p1
-
-
[1] Marshall J 1960 Phys. Fluids 3 134
[2] Hagerman D C, Osher J E 1963 Rev. Sci. Instrum. 34 56Google Scholar
[3] Subramaniam V, Raja L L 2017 Phys. Plasmas 24 062507Google Scholar
[4] Cheng D Y 1971 AIAA J. 9 1681Google Scholar
[5] Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar
[6] Wang M Y, Choi C K, Mead F B 1992 9th Symp on Space Nuclear Power Systems Albuquerque NM, January 12–16, 1992 p30
[7] Bellan P M, You S, Hsu S C 2005 Astrophys. Space Sci. 298 203Google Scholar
[8] Bellan P M 2005 Phys. Plasmas 12 058301Google Scholar
[9] Golingo R P, Shumlak U, Nelson B A 2005 Phys. Plasmas 12 062505Google Scholar
[10] Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008 Phys. plasmas 15 103701Google Scholar
[11] Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar
[12] Underwood T C, Loebner K T, Cappelli A 2017 High Energy Density Phys. 23 73Google Scholar
[13] Hart P J 1962 Phys. Fluids. 5 38Google Scholar
[14] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar
[15] Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar
[16] Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506Google Scholar
[17] Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar
[18] Milanese M M, Niedbalski J, Moroso R L 2007 IEEE Trans. Plasma Sci. 35 808Google Scholar
[19] Lie T N, Rhee M J, Chang C C 1967 AIAA 67 1
[20] Michels C J, Ramins P 1964 Phys. Fluids 7 71Google Scholar
[21] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 64 075201Google Scholar
Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar
[22] Gloersen P, Gorowitz B 1966 AIAA J. 4 436Google Scholar
[23] Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287Google Scholar
[24] 余鑫, 漆亮文, 赵崇霄, 任春生 2020 69 035202Google Scholar
Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar
[25] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar
Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar
[26] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 68 035203Google Scholar
Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar
[27] Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar
[28] Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21
[29] Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar
[30] Lie T N, Ali A W, Mclean E A, Kolb A C 1967 Phys. Fluids 10 1545Google Scholar
[31] Markusic T E, Thio Y C F 2002 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7–10, 2002 p1
Catalog
Metrics
- Abstract views: 4803
- PDF Downloads: 70
- Cited By: 0