-
In this paper the optical vortices with topological charge q = –1, 1, 2, 4 are recorded in azo polymer films by using holographic technology. The forked holographic gratings formed by the Gaussian beam and optical vortex beam are recorded in the sample films, the original forked holographic grating and the recording rate are analyzed. The vortex beam is reconstructed by illuminating the sample film with a reference beam, and the recording quality is analyzed. Also the erasability and durability of the sample are tested. The experimental results show that the recording rates of vortex beams with different topological charges are relatively uniform, which means that the optical vortices with different topological charges can be recorded at the same speed. The forked holographic grating of the high-order optical vortex splits in the recording process due to the disturbances, such as anisotropic nonlinear light, atmospheric turbulence, and background light field. However, the split vortex beam still maintains a stable ring structure. The reconstructed optical vortex and the original optical vortex are highly consistent in morphology, and the interference fringes of the reconstructed optical vortices are highly consistent with the original vortex holographic gratings, indicating that the topological charge information in the optical vortices can be effectively recorded and read out. The recorded information can be erased by heating the sample to about 97 ℃, and new information can be re-recorded after cooling. There appears no fatigue in the sample after the information has been erased 100 times and good durability is still retained. Optical vortices theoretically have infinite states of topological charges, based on which great success is achieved in optical communication and information encoding. Therefore, storing and reading information of topological charges in optical vortices may have potential applications in optical information storage.
-
Keywords:
- holography /
- azo polymer /
- optical vortex /
- topological charge
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar
[3] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar
[4] Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar
[5] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar
[6] Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar
[7] Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar
[8] Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar
[9] Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar
[10] Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar
[11] Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar
[12] Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar
[13] Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar
[14] Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar
[15] Padgett M J 2017 Opt. Express 25 11265Google Scholar
[16] Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar
[17] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar
[18] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar
[19] Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar
[20] Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar
[21] Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar
[22] Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar
[23] Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar
[24] Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar
[25] Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar
[26] Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar
[27] Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar
[28] Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar
[29] Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar
[30] Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar
[31] Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar
[32] Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar
[33] Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar
[34] Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar
-
图 2 涡旋全息记录实验装置. W1和W2, 记录光束; L1, 焦距为7.5 cm的凸透镜; L2, 焦距为20 cm的凸透镜; P, 偏振片; BS1, BS2, 分束器; A1, A2, A3, A4, 衰减片; M, M1, M2, M3, 反光镜; SLM, 空间光调制器
Figure 2. Experimental setup for vortex holographic recording. W1 and W2, recording waves. L1, lens with a focal length of 7.5 cm; L2, lens with a focal length of 20 cm; P, polarizer; BS1, BS2, beam splitter; A1, A2, A3, A4, attenuator; M, M1, M2, M3, mirror; SLM, spatial light modulator.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar
[3] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar
[4] Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar
[5] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar
[6] Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar
[7] Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar
[8] Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar
[9] Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar
[10] Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar
[11] Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar
[12] Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar
[13] Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar
[14] Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar
[15] Padgett M J 2017 Opt. Express 25 11265Google Scholar
[16] Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar
[17] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar
[18] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar
[19] Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar
[20] Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar
[21] Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar
[22] Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar
[23] Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar
[24] Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar
[25] Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar
[26] Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar
[27] Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar
[28] Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar
[29] Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar
[30] Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar
[31] Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar
[32] Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar
[33] Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar
[34] Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar
Catalog
Metrics
- Abstract views: 5381
- PDF Downloads: 81
- Cited By: 0