Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recording optical vortices in azo polymer films by applying holographic method

Chen Tian-Yu Wang Chang-Shun Pan Yu-Jia Sun Li-Li

Citation:

Recording optical vortices in azo polymer films by applying holographic method

Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li
PDF
HTML
Get Citation
  • In this paper the optical vortices with topological charge q = –1, 1, 2, 4 are recorded in azo polymer films by using holographic technology. The forked holographic gratings formed by the Gaussian beam and optical vortex beam are recorded in the sample films, the original forked holographic grating and the recording rate are analyzed. The vortex beam is reconstructed by illuminating the sample film with a reference beam, and the recording quality is analyzed. Also the erasability and durability of the sample are tested. The experimental results show that the recording rates of vortex beams with different topological charges are relatively uniform, which means that the optical vortices with different topological charges can be recorded at the same speed. The forked holographic grating of the high-order optical vortex splits in the recording process due to the disturbances, such as anisotropic nonlinear light, atmospheric turbulence, and background light field. However, the split vortex beam still maintains a stable ring structure. The reconstructed optical vortex and the original optical vortex are highly consistent in morphology, and the interference fringes of the reconstructed optical vortices are highly consistent with the original vortex holographic gratings, indicating that the topological charge information in the optical vortices can be effectively recorded and read out. The recorded information can be erased by heating the sample to about 97 ℃, and new information can be re-recorded after cooling. There appears no fatigue in the sample after the information has been erased 100 times and good durability is still retained. Optical vortices theoretically have infinite states of topological charges, based on which great success is achieved in optical communication and information encoding. Therefore, storing and reading information of topological charges in optical vortices may have potential applications in optical information storage.
      Corresponding author: Chen Tian-Yu, tianyuchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574211)
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [3]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [4]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [6]

    Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar

    [7]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [8]

    Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar

    [9]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [10]

    Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar

    [11]

    Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar

    [12]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [13]

    Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar

    [14]

    Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar

    [15]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [16]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [17]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [18]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [19]

    Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar

    [20]

    Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar

    [21]

    Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar

    [22]

    Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar

    [23]

    Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar

    [24]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar

    [25]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [26]

    Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar

    [27]

    Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar

    [28]

    Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar

    [29]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar

    [30]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar

    [31]

    Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar

    [32]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar

    [33]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar

    [34]

    Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar

  • 图 1  偶氮苯聚合物薄膜的吸收光谱, 插图为样品AFM图像, 封装后的样品结构和化合物的化学结构

    Figure 1.  Absorption spectra of the azo-benzene polymer film. Inset: AFM image and structure of the sample, and chemical structure of the compound.

    图 2  涡旋全息记录实验装置. W1和W2, 记录光束; L1, 焦距为7.5 cm的凸透镜; L2, 焦距为20 cm的凸透镜; P, 偏振片; BS1, BS2, 分束器; A1, A2, A3, A4, 衰减片; M, M1, M2, M3, 反光镜; SLM, 空间光调制器

    Figure 2.  Experimental setup for vortex holographic recording. W1 and W2, recording waves. L1, lens with a focal length of 7.5 cm; L2, lens with a focal length of 20 cm; P, polarizer; BS1, BS2, beam splitter; A1, A2, A3, A4, attenuator; M, M1, M2, M3, mirror; SLM, spatial light modulator.

    图 3  用以产生不同拓扑荷数涡旋光束的相位图像配置文件 (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4

    Figure 3.  Phase profiles displayed on the SLM to generate vortex beams with different topological charges q: (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4.

    图 4  计算全息光栅与实验中记录的涡旋全息光栅的对比 (a)−(d)分别为q = –1, 1, 2, 4的计算全息光栅; (e)−(h)分别为实验中记录的q = –1, 1, 2, 4全息光栅

    Figure 4.  Comparison between CGH gratings and vortex holographic gratings: (a)−(d) the CGH gratings of q = –1, 1, 2, 4; (e)−(h) vortex holographic gratings of q = –1, 1, 2, 4 recorded in experiments.

    图 5  +1级衍射光斑强度的探测

    Figure 5.  Detection of the intensity of the first order diffraction spot.

    图 6  (a)衍射光斑强度随时间的变化; (b)涡旋全息光栅的衍射效率

    Figure 6.  (a) Curves of the intensity variation of diffraction spots; (b) diffraction efficiency of optical vortex holographic grating.

    图 7  高斯光束照射不同拓扑荷数涡旋光记录的全息光栅得到的衍射图样 (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4

    Figure 7.  Diffraction images generated by using reference beam to illuminate samples with holograms recorded different topological charges: (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4.

    图 8  (a)−(d)再现涡旋光束; (e)−(h)原始涡旋光束; (i)−(l)再现涡旋光束与高斯光束的干涉图样

    Figure 8.  (a)−(d) Reconstructed optical vortex beams; (e)−(h) original optical vortex beam; (i)−(l) the interference pattern of reconstructed optical vortex beam and Gaussian beam.

    Baidu
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [3]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [4]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [6]

    Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar

    [7]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [8]

    Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar

    [9]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [10]

    Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar

    [11]

    Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar

    [12]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [13]

    Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar

    [14]

    Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar

    [15]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [16]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [17]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [18]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [19]

    Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar

    [20]

    Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar

    [21]

    Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar

    [22]

    Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar

    [23]

    Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar

    [24]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar

    [25]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [26]

    Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar

    [27]

    Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar

    [28]

    Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar

    [29]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar

    [30]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar

    [31]

    Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar

    [32]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar

    [33]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar

    [34]

    Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar

  • [1] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] Zhao Ting, Gong Maomao, Zhang Song Bin. Theoretical study on the photo-ionization of helium atoms by Bessel vortex light. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [3] Zhang Hong-Bin, Chen Ling, Zhang Bao-Cheng. Radiation shielding of analog Bañados-Teitelboim-Zanelli black holes. Acta Physica Sinica, 2023, 72(6): 060401. doi: 10.7498/aps.72.20222296
    [4] Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu. Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications. Acta Physica Sinica, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [5] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [6] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] Wei Wei, Zhang Zhi-Ming, Tang Li-Qin, Ding Lei, Fan Wan-De, Li Yi-Gang. Transmission characteristics of vortex beams in a sixfold photonic quasi-crystal fiber. Acta Physica Sinica, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [9] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [10] Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang. Propagation properties of vortex beams in a ring photonic crystal fiber. Acta Physica Sinica, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [11] Zhang Hao, Chang Chen-Liang, Xia Jun. Detection optical vortex topological charges with monocyclic multistage intensity distribution. Acta Physica Sinica, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [12] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [13] Zhao Ji-Zhi, Jiang Yue-Song, Ou Jun, Ye Ji-Hai. Scattering of the focused Laguerre-Gaussian beams by a spherical particle. Acta Physica Sinica, 2012, 61(6): 064202. doi: 10.7498/aps.61.064202
    [14] Xie Ru-Sheng, Zhao You-Yuan. Orientation-enhanced and holographic storage of a novel azobenzene doped polymer. Acta Physica Sinica, 2011, 60(5): 054202. doi: 10.7498/aps.60.054202
    [15] Feng Bo, Gan Xue-Tao, Liu Sheng, Zhao Jian-Lin. Transformation of multi-edge-dislocations to screw-dislocations in optical field. Acta Physica Sinica, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [16] Ou Jun, Jiang Yue-Song, Li Fang, Liu Li. Shifts of beam centroid of Laguerre-Gaussian beams reflected and refracted at a dielectric interface. Acta Physica Sinica, 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [17] Picart Pascal, Tankam Patrice, Peng Zu-Jie, Li Jun-Chang. An optical system of scattered light digital color holography and its wave front reconstruction algorithm. Acta Physica Sinica, 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [18] Tian Yong, Pan Xu, Wang Chang-Shun, Zhang Xiao-Qiang, Zeng Yi. Two-dimensional polarization holographic recordings in azobenzene liquid-crystalline polymer thin films. Acta Physica Sinica, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [19] Liang Jian-Chu, Wang Xiao-Sheng, Luo Duan-Bin, She Wei-Long, Wu Shui-Zhu, Zeng Fang, Tang Tian, Yao Sheng-Lan. Z-scan measurements on photoisomerization of azobenzene polymer and their theoretical interpretation. Acta Physica Sinica, 2004, 53(10): 3596-3600. doi: 10.7498/aps.53.3596
    [20] LIANG ZHONG-CHENG, MING HAI, WANG PEI, ZHANG JIANG-YING, LONG YUN-ZE, XIA YONG, XIE JIAN-PING, ZHANG QI-JIN. NONLINEARLY OPTICAL-INDUCED BIREFRINGENCE IN AZO LIQUID CRYSTAL POLYMERS. Acta Physica Sinica, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
Metrics
  • Abstract views:  5381
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2020
  • Accepted Date:  06 October 2020
  • Available Online:  25 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回
Baidu
map