搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦原子贝塞尔涡旋光电离的理论研究

赵婷 宫毛毛 张松斌

引用本文:
Citation:

氦原子贝塞尔涡旋光电离的理论研究

赵婷, 宫毛毛, 张松斌

Theoretical study on the photo-ionization of helium atoms by Bessel vortex light

Zhao Ting, Gong Maomao, Zhang Song Bin
PDF
导出引用
  • 涡旋光携带额外的轨道角动量,在与原子分子相互作用时能揭示更深层次的动力学信息。本文基于一阶Born近似构建了涡旋光电离原子分子的理论计算框架,并以氦原子为例进行详细计算和分析。系统地研究了涡旋光引起的光电离截面如何随入射能量及光电子发射角度变化,特别分析了位于涡旋光中心相位奇点的电离现象,揭示了涡旋光在引发光电离过程中的独特行为模式,为进一步研究涡旋光电离过程及其应用奠定了一定的理论基础。
    Due to the additional orbital angular momentum possessed by vortex light, its interaction with atoms and molecules can unveil deeper dynamical insights compared to those obtained with plane wave light. This paper aims to establish a theoretical framework for the photoionization of atoms and molecules by vortex light. In the context of macroscopic gas targets, helium atoms are randomly dispersed in the vicinity of the entire expanse of the Bessel vortex beam. The ultimate photoionization cross-section is not contingent upon the angular momentum of the vortex light; instead, it hinges on the opening angle of the Bessel vortex light. This paper undertakes a systematic computation of the variation pattern of the photoionization cross-section with respect to photon energy, as well as the angular distribution of photoelectrons under diverse geometric conditions. The computed results demonstrate that the photoionization cross-section of the vortex light differs markedly from that of the plane wave light. To delve deeper into the characteristics of the phase singularity (where the light intensity reaches zero) of the vortex light, this paper further calculates the photoionization at the phase singularity of the vortex light with opening angles of 5°, 30°, and 60° respectively. The research findings reveal that the angular distribution of photoelectrons at this juncture is significantly reliant on both the orbital angular momentum and the opening angle of the vortex light, and the calculated absolute cross-section does not equate to zero. This represents an important distinguishing feature of the Bessel vortex light when it interacts with atoms, setting it apart from the plane wave. This work lays the groundwork for further studies on vortex light photoionization and their applications.
  • [1]

    Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (Wiley)

    [2]

    Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge Univ. Press)

    [3]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161

    [4]

    Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601

    [5]

    Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420

    [6]

    Franke-Arnold S, Allen L, Padgett M 2008 Laser & Photonics Reviews 2 299

    [7]

    Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406

    [8]

    He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826

    [9]

    Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841

    [10]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161

    [11]

    Afanasev A, Carlson C E, Solyanik M 2017 Journal of Optics 19 105401

    [12]

    Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311

    [13]

    Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106

    [14]

    Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nature Communications 7 12998

    [15]

    Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660

    [16]

    Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414

    [17]

    Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 Journal of Physics B: Atomic, Molecular and Optical Physics 46 205002

    [18]

    Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415

    [19]

    Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117

    [20]

    De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nature Photonics 14 554

    [21]

    Davis B S, Kaplan L, McGuire J H 2013 Journal of Optics 15 035403

    [22]

    Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001

    [23]

    Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New Journal of Physics 12 083053

    [24]

    Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nature Photonics 16 570

    [25]

    Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nature Photonics 17 82

    [26]

    Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Science Bulletin 68 2555

    [27]

    Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P c v R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401

    [28]

    Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Science Advances 2 e1501349

    [29]

    Forbes K A, Andrews D L 2018 Opt. Lett. 43 435

    [30]

    Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 Journal of Chemical Theory and Computation 15 4180

    [31]

    Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Communications Physics 1 87

    [32]

    Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515

    [33]

    Cooper J W 1993 Phys. Rev. A 47 1841

    [34]

    Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425

    [35]

    Brumboiu I E, Eriksson O, Norman P 2019 The Journal of Chemical Physics 150 044306

    [36]

    Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nature Communications 8

    [37]

    Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804

    [38]

    Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818

    [39]

    Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (WORLD SCIENTIFIC)

    [40]

    Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803

    [41]

    Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114

    [42]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [43]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [44]

    Jr T H D 1989 J. Chem. Phys. 90 1007

    [45]

    Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544

  • [1] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , doi: 10.7498/aps.73.20240016
    [2] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用.  , doi: 10.7498/aps.72.20231521
    [3] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离.  , doi: 10.7498/aps.71.20220341
    [4] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应.  , doi: 10.7498/aps.71.20211905
    [5] 陈天宇, 王长顺, 潘雨佳, 孙丽丽. 利用全息法在偶氮聚合物薄膜中记录涡旋光场.  , doi: 10.7498/aps.70.20201496
    [6] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布.  , doi: 10.7498/aps.69.20191977
    [7] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , doi: 10.7498/aps.69.20191524
    [8] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算.  , doi: 10.7498/aps.69.20191814
    [9] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , doi: 10.7498/aps.68.20190060
    [10] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究.  , doi: 10.7498/aps.66.014205
    [11] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应.  , doi: 10.7498/aps.66.043201
    [12] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , doi: 10.7498/aps.64.133201
    [13] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量.  , doi: 10.7498/aps.63.193701
    [14] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究.  , doi: 10.7498/aps.62.053602
    [15] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , doi: 10.7498/aps.60.053202
    [16] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , doi: 10.7498/aps.58.5297
    [17] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , doi: 10.7498/aps.55.2322
    [18] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , doi: 10.7498/aps.55.1083
    [19] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , doi: 10.7498/aps.55.3433
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数.  , doi: 10.7498/aps.50.655
计量
  • 文章访问数:  100
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-13

/

返回文章
返回
Baidu
map