Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study of new phase of layered Bi2Se3

Guo Yu Zhou Si Zhao Ji-Jun

Citation:

First-principle study of new phase of layered Bi2Se3

Guo Yu, Zhou Si, Zhao Ji-Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Recently, the boom of graphene has aroused great interest in searching for other two-dimensional (2D) compound materials, which possess many intriguing physical and chemical properties. Interestingly, 2D allotropes of differing atomic structures show even more diverse properties. The Bi2Se3 has attracted much attention due to its unique physical properties, while its allotrope has not been investigated. Based on first-principle calculations, here in this work we predict a new phase of Bi2Se3 monolayer with outstanding dynamic and thermal stabilities, named as β-Bi2Se3. Notably, the β-Bi2Se3 monolayer is a semiconductor with a modest direct band gap of 2.40 eV and small effective mass down to 0.52m0, large absorption coefficient of 105 cm–1 in the visible-light spectrum, suitable band edge positions for photocatalysis of water splitting. Moreover, the breaking of mirror symmetry in β-Bi2Se3 along the out-of-plane direction induces vertical dipolar polarization, yielding a remarkable out-of-plane piezoelectric coefficient of 0.58 pm/V. These exceptional physical properties render the layered Bi2Se3 a promising candidate for future high-speed electronics and optoelectronics.
      Corresponding author: Zhou Si, sizhou@dlut.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant Nos. BX20190052, 2020M670739), the National Natural Science Foundation of China (Grant No. 11974068), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT20LAB110)
    [1]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [2]

    Kong D, Chen Y, Cha J J, Zhang Q, Analytis J G, Lai K, Liu Z, Hong S S, Koski K J, Mo S K 2011 Nat. Nanotechnol. 6 705Google Scholar

    [3]

    Brom J E, Ke Y, Du R, Won D, Weng X, Andre K, Gagnon J C, Mohney S E, Li Q, Chen K 2012 Appl. Phys. Lett. 100 162110Google Scholar

    [4]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711Google Scholar

    [5]

    Alegria L D, Petta J R 2012 Nanotechnology 23 435601Google Scholar

    [6]

    Le P H, Wu K H, Luo C W, Leu J 2013 Thin Solid Films 534 659Google Scholar

    [7]

    Hirahara T, Sakamoto Y, Takeichi Y, Miyazaki H, Kimura S, Matsuda I, Kakizaki A, Hasegawa S 2010 Phys. Rev. B 82 155309Google Scholar

    [8]

    Yu X, He L, Lang M, Jiang W, Xiu F, Liao Z, Wang Y, Kou X, Zhang P, Tang J 2012 Nanotechnology 24 015705Google Scholar

    [9]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C 2010 Adv. Mater. 22 4002Google Scholar

    [10]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [11]

    Bansal N, Koirala N, Brahlek M, Han M G, Zhu Y, Cao Y, Waugh J, Dessau D S, Oh S 2014 Appl. Phys. Lett. 104 241606Google Scholar

    [12]

    Chen S, Zhao C, Li Y, Huang H, Lu S, Zhang H, Wen S 2014 Opt. Mater. Express 4 587Google Scholar

    [13]

    Sun Y, Cheng H, Gao S, Liu Q, Sun Z, Xiao C, Wu C, Wei S, Xie Y 2012 J. Am. Chem. Soc. 134 20294Google Scholar

    [14]

    Min Y, Park G, Kim B, Giri A, Zeng J, Roh J W, Kim S I, Lee K H, Jeong U 2015 ACS Nano 9 6843Google Scholar

    [15]

    Xu H, Chen G, Jin R, Chen D, Wang Y, Pei J, Zhang Y, Yan C, Qiu Z 2014 Crystengcomm 16 3965Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Li Y, Xu L, Liu H, Li Y 2014 Chem. Soc. Rev. 43 2572Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [21]

    Mogulkoc Y, Modarresi M, Mogulkoc A, Ciftci Y O 2016 Comput. Mater. Sci. 124 23Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [28]

    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Barnett R N, Landman U 1993 Phys. Rev. B 48 2081Google Scholar

    [30]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [31]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [32]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [33]

    Han N, Liu H, Zhou S, Zhao J 2016 J. Phys. Chem. C 120 14699Google Scholar

    [34]

    Zhan L B, Yang C L, Wang M S, Ma X G 2020 Physica E 124 114272Google Scholar

    [35]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [36]

    Graziano G, Klimeš J, Fernandez Alonso F, Michaelides A 2012 J. Phys.-Condes. Matter 24 424216Google Scholar

    [37]

    Cai Y, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [38]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Ma Z, Zhuang J, Zhang X, Zhou Z 2018 Front. Phys. 13 138104Google Scholar

    [41]

    Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z 2018 Small Methods 2 1700359Google Scholar

    [42]

    Beal A R, Hughes H P 1979 Solid State Phys. 12 881Google Scholar

    [43]

    Duerloo K N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [44]

    King Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [45]

    Hangleiter A, Hitzel F, Lahmann S, Rossow U 2003 Appl. Phys. Lett. 83 1169Google Scholar

    [46]

    Shimada K 2006 Jpn. J. Appl. Phys. 45 L358Google Scholar

    [47]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

  • 图 1  (a) α-Bi2Se3的原子结构; (b)单层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (c)双层β-Bi2Se3结构的俯视图(上图)和侧视图(下图); (d)经过10 ps第一性原理分子动力学模拟, 得到了300 K时Bi2Se3单层的平衡结构; (e) β-Bi2Se3的声子谱; (f) β-Bi2Se3单层的电子局域函数

    Figure 1.  (a) Atomic structure of α-Bi2Se3; (b) the top and side views of monolayer β-Bi2Se3; (c) the top and side views of bilayer β-Bi2Se3; (d) snapshots of the equilibrium structures of the β-Bi2Se3 monolayer at 300 K after 10 ps ab initio molecular dynamic simulation; (e) phonon dispersion of monolayer β-Bi2Se3; (f) electron localization function for monolayer β-Bi2Se3.

    图 A1  CALYPSO搜索得到的几个较低能量的Bi2Se3单层结构(a)及对应的声子谱(b), 其中Bi2Se3-1, Bi2Se3-2, Bi2Se3-3的形成能分别为–0.15, –0.12, –0.09 eV/atom

    Figure A1.  Some typical low-energy structures (a) of freestanding Bi2Se3 monolayer predicted by the CALYPSO code and corresponding phonon dispersions (b). The formation energy of Bi2Se3-1, Bi2Se3-2, Bi2Se3-3 are –0.15, –0.12, –0.09 eV/atom respectively.

    图 A2  温度为300 K时β-Bi2Se3单层的能量-时间变化 曲线

    Figure A2.  Variations of temperature and energy with the time of AIMD simulation for β-Bi2Se3 monolayer at 300 K.

    图 2  α-Bi2Se3β-Bi2Se3体系表面自由能的化学势相图

    Figure 2.  Chemical potential phase diagram of surface free ener-gy for α-Bi2Se3 and β-Bi2Se3.

    图 3  (a)不考虑SOC和(b)考虑SOC时, 采用HSE06泛函计算得到的β-Bi2Se3的能带结构和LDOS

    Figure 3.  The electronic band structures (left panel) and LDOS (right panel) (a) without and (b) with SOC effect for monolayer β-Bi2Se3 using HSE06 functional, respectively.

    图 4  (a)采用HSE06泛函并且考虑SOC效应的双层(左图)和块体(右图)β-Bi2Se3的能带结构; (b)单层β-Bi2Se3带隙随双轴应变的变化

    Figure 4.  (a) The electronic band structures for bilayer (left panel) and bulk (right panel) β-Bi2Se3 based on HSE06 level with SOC effect; (d) effect of biaxial strain on band gap of monolayer β-Bi2Se3.

    图 A3  不同堆叠方式的双层β-Bi2Se3 (a)能量最低的β-Bi2Se3双层结构, 将它的能量设定为0 eV; (b)相对能量为0.32 eV;(c)相对能量为0.55 eV

    Figure A3.  β-Bi2Se3 bilayer with different stacking types and their relative energies: (a) the atomic structure of β-Bi2Se3 bilayer with the lowest energy, and its energy is set to 0 eV; the bilayer structures with relative energies of 0.32 eV (b) and 0.55 eV (c), respectively.

    图 5  (a)单层β-Bi2Se3的VBM和CBM对比pH = 7和pH = 0的氧化还原电势; (b)单层β-Bi2Se3的光吸收系数, λ是波长, 虚线中间区域表示可见光区

    Figure 5.  (a) The location of VBM and CBM relative to vacuum energy of monolayer β-Bi2Se3 at pH = 0 and 7; (b) optical absorption coefficient for monolayer β-Bi2Se3. λ is the wave length, and the area between the red and the purple represents the visible range

    表 1  单层、双层和块体β-Bi2Se3相对真空能级的价带顶VBM和导带底CBM, 空穴和电子沿着xy方向的有效质量(mxh, myh, mxe, mye). 载流子有效质量以自由电子的静止质量m0为单位

    Table 1.  The VBM and CBM related to vacuum level for monolayer, bilayer and bulk β-Bi2Se3, and the corresponding carrier effective mass. m0 is the electron rest mass.

    β-Bi2Se3VBM/eVCBM/eVmxhmxemyhmye
    Monolayer–5.82–3.437.880.705.690.66
    Bilayer–5.00–4.242.550.522.360.52
    Bulk0.650.630.650.67
    DownLoad: CSV
    Baidu
  • [1]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [2]

    Kong D, Chen Y, Cha J J, Zhang Q, Analytis J G, Lai K, Liu Z, Hong S S, Koski K J, Mo S K 2011 Nat. Nanotechnol. 6 705Google Scholar

    [3]

    Brom J E, Ke Y, Du R, Won D, Weng X, Andre K, Gagnon J C, Mohney S E, Li Q, Chen K 2012 Appl. Phys. Lett. 100 162110Google Scholar

    [4]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711Google Scholar

    [5]

    Alegria L D, Petta J R 2012 Nanotechnology 23 435601Google Scholar

    [6]

    Le P H, Wu K H, Luo C W, Leu J 2013 Thin Solid Films 534 659Google Scholar

    [7]

    Hirahara T, Sakamoto Y, Takeichi Y, Miyazaki H, Kimura S, Matsuda I, Kakizaki A, Hasegawa S 2010 Phys. Rev. B 82 155309Google Scholar

    [8]

    Yu X, He L, Lang M, Jiang W, Xiu F, Liao Z, Wang Y, Kou X, Zhang P, Tang J 2012 Nanotechnology 24 015705Google Scholar

    [9]

    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C 2010 Adv. Mater. 22 4002Google Scholar

    [10]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398Google Scholar

    [11]

    Bansal N, Koirala N, Brahlek M, Han M G, Zhu Y, Cao Y, Waugh J, Dessau D S, Oh S 2014 Appl. Phys. Lett. 104 241606Google Scholar

    [12]

    Chen S, Zhao C, Li Y, Huang H, Lu S, Zhang H, Wen S 2014 Opt. Mater. Express 4 587Google Scholar

    [13]

    Sun Y, Cheng H, Gao S, Liu Q, Sun Z, Xiao C, Wu C, Wei S, Xie Y 2012 J. Am. Chem. Soc. 134 20294Google Scholar

    [14]

    Min Y, Park G, Kim B, Giri A, Zeng J, Roh J W, Kim S I, Lee K H, Jeong U 2015 ACS Nano 9 6843Google Scholar

    [15]

    Xu H, Chen G, Jin R, Chen D, Wang Y, Pei J, Zhang Y, Yan C, Qiu Z 2014 Crystengcomm 16 3965Google Scholar

    [16]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [17]

    Li Y, Xu L, Liu H, Li Y 2014 Chem. Soc. Rev. 43 2572Google Scholar

    [18]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [19]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [21]

    Mogulkoc Y, Modarresi M, Mogulkoc A, Ciftci Y O 2016 Comput. Mater. Sci. 124 23Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [26]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [27]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [28]

    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [29]

    Barnett R N, Landman U 1993 Phys. Rev. B 48 2081Google Scholar

    [30]

    Martyna G J, Klein M L, Tuckerman M 1992 J. Chem. Phys. 97 2635Google Scholar

    [31]

    Wang Y, Lv J, Zhu L, Ma Y 2010 Phys. Rev. B 82 094116Google Scholar

    [32]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [33]

    Han N, Liu H, Zhou S, Zhao J 2016 J. Phys. Chem. C 120 14699Google Scholar

    [34]

    Zhan L B, Yang C L, Wang M S, Ma X G 2020 Physica E 124 114272Google Scholar

    [35]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [36]

    Graziano G, Klimeš J, Fernandez Alonso F, Michaelides A 2012 J. Phys.-Condes. Matter 24 424216Google Scholar

    [37]

    Cai Y, Zhang G, Zhang Y W 2014 Sci. Rep. 4 6677Google Scholar

    [38]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [39]

    Zhuang H L, Hennig R G 2013 Chem. Mater. 25 3232Google Scholar

    [40]

    Ma Z, Zhuang J, Zhang X, Zhou Z 2018 Front. Phys. 13 138104Google Scholar

    [41]

    Zhang X, Zhang Z, Wu D, Zhang X, Zhao X, Zhou Z 2018 Small Methods 2 1700359Google Scholar

    [42]

    Beal A R, Hughes H P 1979 Solid State Phys. 12 881Google Scholar

    [43]

    Duerloo K N, Ong M T, Reed E J 2012 J. Phys. Chem. Lett. 3 2871Google Scholar

    [44]

    King Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [45]

    Hangleiter A, Hitzel F, Lahmann S, Rossow U 2003 Appl. Phys. Lett. 83 1169Google Scholar

    [46]

    Shimada K 2006 Jpn. J. Appl. Phys. 45 L358Google Scholar

    [47]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

  • [1] Yu Yue, Yang Heng-Yu, Zhou Wu-Xing, Ouyang Tao, Xie Guo-Feng. First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As). Acta Physica Sinica, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [2] Huang Wen-Jun, Wang Ya-Ping, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Electronic structures and defect properties of lithium-rich manganese-based ternary material Li1.208Ni0.333Co0.042Mn0.417O2. Acta Physica Sinica, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [3] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [4] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, 2020, 69(17): 177101. doi: 10.7498/aps.69.20200656
    [5] Xu Hong, Yuan Zheng-Yi, Huang Tong-Fei, Wang Xiao, Chen Zheng-Xian, Wei Jin, Zhang Xiang, Huang Yuan. Inspiration of wrinkles in layered material for the mechanism study of several geological activities. Acta Physica Sinica, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [6] Wang Peng-Cheng, Cao Yi, Xie Hong-Guang, Yin Yao, Wang Wei, Wang Ze-Ying, Ma Xin-Chen, Wang Lin, Huang Wei. Magnetic properties of layered chiral topological magnetic material Cr1/3NbS2. Acta Physica Sinica, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [7] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [8] Lin Chuan-Jin, Zheng Feng, Zhu Zi-Zhong. Electronic structures and Li diffusion in cathode material Li2FeO2 of Li-ion batteries. Acta Physica Sinica, 2019, 68(15): 157201. doi: 10.7498/aps.68.20190213
    [9] Zhang Dong, Lou Wen-Kai, Chang Kai. Theoretical progress of polarized interfaces in semiconductors. Acta Physica Sinica, 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [10] Li Zhu-Song, Steven Zhu. Continuum modeling of thermal transport in superlattices and layered materials for new energy matierlas. Acta Physica Sinica, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [11] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [12] Han Wen-Peng, Liu Hong. Band structures of strain-deformed BC3 nanotubes. Acta Physica Sinica, 2010, 59(6): 4194-4201. doi: 10.7498/aps.59.4194
    [13] Chen Xiang-Lei, Zhang Jie, Du Huai-Jiang, Zhou Xian-Yi, Ye Bang-Jiao. Calculation of positron lifetime of compound semiconductors. Acta Physica Sinica, 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [14] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [15] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [16] Zhao Wen-Bin, Zhang Guan-Jun, Yan Zhang. Investigation on surface damage phenomena induced by flashover across semiconductor. Acta Physica Sinica, 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [17] Feng Jing, Xiao Bing, Chen Jing-Chao. Electronic and optical properties of CuInSe2 from ab-initio calculations. Acta Physica Sinica, 2007, 56(10): 5990-5995. doi: 10.7498/aps.56.5990
    [18] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [19] Chen Li, Li Hua. Study on the electronic structure and superconductivity of MgCNi3. Acta Physica Sinica, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
Metrics
  • Abstract views:  12000
  • PDF Downloads:  563
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2020
  • Accepted Date:  19 September 2020
  • Available Online:  09 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map