-
Many previous researches on the plasma sheath were based on the fact that the electrons satisfy the classical Maxwell velocity distribution function, while the particles in the plasma have long-range electromagnetic interactions. It is more appropriate to use the non-extensive distribution proposed by Tsallis to describe the electrons. In this paper, a collisional magnetized plasma sheath model with non-extensive distribution of electrons is established. Bohm criterion is derived theoretically. With the ion drift motion in the plasma pre-sheath region taken into consideration, the ion Mach number is only related to the angle of the magnetic field, the collision parameters, the electric field at the sheath edge, and non-extensive parameter
$ q $ . The influence of parameter$ q $ on the criterion is discussed in this paper. The lower limit of the ion Mach number changes with the value of parameter$ q $ . The lower limit of the ion Mach number increases for$ q < 1 $ . And the lower limit of the ion Mach number decreases for$ q>1 $ . With the increase of$ q $ , the number of electrons with lower speed increases, ions need less kinetic energy to enter into the sheath and thus enter into the sheath more easily. Through numerical simulation, it is found that compared with the structure of the plasma magnetized sheath with Maxwell distribution ($ q=1 $ ), the structure of the plasma magnetized sheath with super-extensive distribution ($ q < 1 $ ) and that with sub-extensive ($ q>1 $ ) are different, including the distribution of the space potential, the ion density, the electron density, and the space charge density. When$ q < 1 $ , the space potential, the electron density and the ion density fall more slowly, and the peak of the space charge density curve is closer to the wall. When$ q>1 $ , the space potential and the ion electron density fall faster, especially the electron density drops to zero faster, and the peak of the space charge density curve is far away from the wall. The simulation results show that the non-extensive parameter$ q $ has a significant influence on the structure of collisional plasma magnetized sheath. The influence of the collision on the magnetized plasma sheath with non-extensive distribution is similar to that with the Maxwell distribution. These conclusions may be useful in solving the problems of plasma boundary.-
Keywords:
- non-extensive distribution /
- plasma /
- sheath
[1] Chodura R 1982 Phys. Fluid 25 1628Google Scholar
[2] Riemann K U 1994 Phys. Plasmas 1 552Google Scholar
[3] Stangeby P C 1995 Phys. Plasmas 2 702Google Scholar
[4] Ahedo E 1997 Phys. Plasmas 4 4419Google Scholar
[5] Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar
[6] Liu J Y, Wang Z X, Wang X G, Zhang Q, Zou X 2003 Phys. Plasmas 10 3507Google Scholar
[7] 王正汹, 刘金远, 邹秀, 刘悦, 王晓刚 2004 53 0793Google Scholar
Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 0793Google Scholar
[8] 邹秀, 刘金远, 王正汹 2004 53 3409Google Scholar
Zou X, Liu J Y, Wang Z X 2004 Acta Phys. Sin. 53 3409Google Scholar
[9] Masoudi S F 2007 Vacuum 81 871Google Scholar
[10] 邹秀, 刘惠平, 谷秀娥 2008 57 5111Google Scholar
Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111Google Scholar
[11] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 65 245201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar
[12] 邹秀, 籍延坤, 邹滨雁 2010 59 1902Google Scholar
Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902Google Scholar
[13] 刘惠平, 邹秀 2020 69 025201Google Scholar
Liu H P, Zou X 2020 Acta Phys. Sin. 69 025201Google Scholar
[14] Hatami M M 2015 Phys. Plasmas 22 013508Google Scholar
[15] Hatami M M 2015 Phys. Plasmas 22 023506Google Scholar
[16] Hatami M M, Tribeche M, Mamun A A 2018 Phys. Plasmas 25 094502Google Scholar
[17] Borgohain D R, Saharia K, Goswami K S 2016 Phys. Plasmas 23 122113Google Scholar
[18] Borgohain D R, Saharia K 2018 Phys. Plasmas 25 032122Google Scholar
[19] 赵晓云, 张丙开, 王春晓, 唐义甲 2019 68 185204Google Scholar
Zhao X Y, Zhang B K, Wang C X, Tang Y J 2019 Acta Phys. Sin. 68 185204Google Scholar
[20] Liu Y, Liu S Q, Xu K 2012 Phys. Plasmas 19 073702Google Scholar
[21] Liu Y, Liu S Q, Zhou L 2013 Phys. Plasmas 20 043702Google Scholar
[22] Tantawy S A E, Tribeche M, Moslem W M 2012 Phys. Plasmas 19 032104Google Scholar
[23] Emamuddin M, Yasmin S, Asaduzzaman M, Mamun A A 2013 Phys. Plasmas 20 083708Google Scholar
[24] Safa N N, Ghomi H, Niknam A R 2014 Phys. Plasmas 21 082111Google Scholar
[25] Mehdipoor M, Mohsenpour T 2015 Phys. Plasmas 22 112110Google Scholar
[26] Gougam L A, Triceche M 2011 Phys. Plasmas 18 062102Google Scholar
[27] Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar
[28] Ou J, Yang J H 2012 Phys. Plasmas 19 113504Google Scholar
[29] Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar
[30] Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar
[31] Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar
-
图 4 具有不同参数
$ q $ 值的离子电子密度分布($B=0.3~\mathrm{T}$ ,$ \theta =15° $ ,$ {E}_{0}=0.1 $ ,$ \beta =0 $ ) (a)$ q < 1 $ ; (b$ )q>1 $ Figure 4. Normalized density of ions and electrons for different values of non-extensive parameter
$ q $ ($B=0.3~\mathrm{T}$ ,$ \theta =15° $ ,$ {E}_{0}=0.1 $ ,$ \beta =0 $ ): (a)$ q < 1 $ ; (b)$ q>1 $ -
[1] Chodura R 1982 Phys. Fluid 25 1628Google Scholar
[2] Riemann K U 1994 Phys. Plasmas 1 552Google Scholar
[3] Stangeby P C 1995 Phys. Plasmas 2 702Google Scholar
[4] Ahedo E 1997 Phys. Plasmas 4 4419Google Scholar
[5] Liu J Y, Wang Z X, Wang X G 2003 Phys. Plasmas 10 3032Google Scholar
[6] Liu J Y, Wang Z X, Wang X G, Zhang Q, Zou X 2003 Phys. Plasmas 10 3507Google Scholar
[7] 王正汹, 刘金远, 邹秀, 刘悦, 王晓刚 2004 53 0793Google Scholar
Wang Z X, Liu J Y, Zou X, Liu Y, Wang X G 2004 Acta Phys. Sin. 53 0793Google Scholar
[8] 邹秀, 刘金远, 王正汹 2004 53 3409Google Scholar
Zou X, Liu J Y, Wang Z X 2004 Acta Phys. Sin. 53 3409Google Scholar
[9] Masoudi S F 2007 Vacuum 81 871Google Scholar
[10] 邹秀, 刘惠平, 谷秀娥 2008 57 5111Google Scholar
Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111Google Scholar
[11] 刘惠平, 邹秀, 邹滨雁, 邱明辉 2016 65 245201Google Scholar
Liu H P, Zou X, Zou B Y, Qiu M H 2016 Acta Phys. Sin. 65 245201Google Scholar
[12] 邹秀, 籍延坤, 邹滨雁 2010 59 1902Google Scholar
Zou X, Ji Y K, Zou B Y 2010 Acta Phys. Sin. 59 1902Google Scholar
[13] 刘惠平, 邹秀 2020 69 025201Google Scholar
Liu H P, Zou X 2020 Acta Phys. Sin. 69 025201Google Scholar
[14] Hatami M M 2015 Phys. Plasmas 22 013508Google Scholar
[15] Hatami M M 2015 Phys. Plasmas 22 023506Google Scholar
[16] Hatami M M, Tribeche M, Mamun A A 2018 Phys. Plasmas 25 094502Google Scholar
[17] Borgohain D R, Saharia K, Goswami K S 2016 Phys. Plasmas 23 122113Google Scholar
[18] Borgohain D R, Saharia K 2018 Phys. Plasmas 25 032122Google Scholar
[19] 赵晓云, 张丙开, 王春晓, 唐义甲 2019 68 185204Google Scholar
Zhao X Y, Zhang B K, Wang C X, Tang Y J 2019 Acta Phys. Sin. 68 185204Google Scholar
[20] Liu Y, Liu S Q, Xu K 2012 Phys. Plasmas 19 073702Google Scholar
[21] Liu Y, Liu S Q, Zhou L 2013 Phys. Plasmas 20 043702Google Scholar
[22] Tantawy S A E, Tribeche M, Moslem W M 2012 Phys. Plasmas 19 032104Google Scholar
[23] Emamuddin M, Yasmin S, Asaduzzaman M, Mamun A A 2013 Phys. Plasmas 20 083708Google Scholar
[24] Safa N N, Ghomi H, Niknam A R 2014 Phys. Plasmas 21 082111Google Scholar
[25] Mehdipoor M, Mohsenpour T 2015 Phys. Plasmas 22 112110Google Scholar
[26] Gougam L A, Triceche M 2011 Phys. Plasmas 18 062102Google Scholar
[27] Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar
[28] Ou J, Yang J H 2012 Phys. Plasmas 19 113504Google Scholar
[29] Li J J, Ma J X, Wei Z A 2013 Phys. Plasmas 20 063503Google Scholar
[30] Wang T T, Ma J X, Wei Z A 2015 Phys. Plasmas 22 093505Google Scholar
[31] Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar
Catalog
Metrics
- Abstract views: 5239
- PDF Downloads: 66
- Cited By: 0