-
Compared with the two-electrode gas spark switch, the three-electrode gas spark switch has high controllability, low working voltage and small jitter, so the three-electrode gas spark switch is widely used in pulse power technology. The discharge of gas spark switch is high pressure gas discharge, which is characterized by high electron collision frequency (1012 Hz), small mean free path (10–6 m), short breakdown time (10–9 s), and complex physical process (including the secondary electron emission, the generation of seed electrons, the space charge effect and various collision processes between electrons and nitrogen molecules, etc). At present, it is difficult to quantitatively describe the breakdown process of the three-electrode gas switch, and the detailed theoretical research is lacking. Therefore, the breakdown mechanism of atmospheric pressure nitrogen spark switch, including two-electrode and three-electrode, is studied theoretically and numerically in this paper. The purpose of this study is to compare the simulation results of the two different gas spark switches, and obtain the characteristics of stream breakdown in different gas spark switches. Firstly, the numerical simulation and theoretical analysis of two-electrode gas spark switch are carried out. According to theoretical and numerical calculation, it can be found that for the plate-plate two-electrode switch, the stream breakdown cannot be generated under low voltage (less than 6.3 kV), while under high voltage (more than 6.3 kV), first the anode-directed streamer is formed, and then the cathode-directed streamer is created. In addition, the simulation results show that the plasma generated by the trigger can effectively reduce the breakdown voltage. Finally, the three-electrode gas spark switch is studied theoretically and numerically. It can be seen that in the breakdown process of the three-electrode gas spark switch, the breakdown first occurs between the trigger and the insulator, and then this plasma channel expands to the anode and cathode, finally forming the arc channel between the anode and the cathode. Under the calculation conditions in this paper, if the cathode-trigger and the anode-trigger are required to break down simultaneously, the applied voltage between the cathode-trigger should be greater than 1.18 kV, while the applied voltage between the anode-trigger should be greater than 3 KV. When the field emission of the trigger is considered, the breakdown threshold can be significantly reduced.
-
Keywords:
- gas spark switch /
- stream breakdown /
- trigger /
- nitrogen
[1] 何孟兵, 李劲 2000 高电压技术 4 33Google Scholar
He M B, Li J 2000 High Voltage Engineering 4 33Google Scholar
[2] Golnabi H 1992 Rev. Sci. Instrum. 63 5804Google Scholar
[3] Golnabi H, Samimi H 1994 Rev. Sci. Instrum. 65 3030Google Scholar
[4] Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/ Plenum Publishers) pp29−32
[5] Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar
[6] Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2010 IEEE Trans. Dielectr. Electr. Insul. 17 34Google Scholar
[7] 邵涛, 章程, 王瑞雪 2016 高电压技术 42 685Google Scholar
Shao T, Zhang C, Wang R X 2016 High Voltage Engineering 42 685Google Scholar
[8] Peterkin F E, Williams P F 1989 Proceedings of the 7th Pulsed Power Conference Monterey, USA, June 11−14, 1989 p559
[9] Macgregor S J, Tuema F A, Turnbull S M, Farish O 1997 IEEE Trans. Plasma Sci. 25 118Google Scholar
[10] Osmokrovic P, Arsic N, Lazarevic Z, Kartalovic N 1996 IEEE Trans. Power Delivery 11 858Google Scholar
[11] Arsic N, Osmokrovic P 1996 Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum Berkeley, USA, July 21−26, 1996 p77
[12] Mcphee A J 1995 Proceedings of the 10 th IEEE International Pulsed Power Conference Albuquerque, USA, July 3−6, 1995 p781
[13] Li L, Li C, Xiangdong Q, Fuchang L, Yuan P 2012 J. Appl. Phys. 111 4163Google Scholar
[14] Thoma C, Welch D R, Rose D V, Zimmerman W R, Woodworth J R 2013 19th IEEE Pulsed Power Conference San Francisco, USA, June 16−21, 2013 p1
[15] 徐翱, 杨林, 尚绍环, 金大志, 杜涛, 谈效华 2016 强激光与粒子束 28 055004Google Scholar
Xu A, Yang L, Shang S H, Jin D Z, Du T, Tan X H 2016 High Power Laser and Particle Beams 28 055004Google Scholar
[16] 徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar
Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage Engineering 44 1922Google Scholar
[17] 孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843
Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser and Particle Beams 2012 24 843 (in Chinese)
[18] Larsson A 2012 IEEE Trans. Plasma Sci. 40 243Google Scholar
[19] Asiunin V I, Davydov S G, Dolgov A N, Pshenichniy A A, Yakubov R 2015 Instrum. Exp. Tech. 58 70Google Scholar
[20] 党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛 2015 强激光与粒子束 27 065004Google Scholar
Tang T F, Yi J H, Sun F J, Wang Z G, Jiang X F, Zeng J T 2015 High Power Laser and Particle Beams 27 065004Google Scholar
[21] Huang D, Yang L J, Huo P, Ma J B, Liu S, Wang W, Yao S L 2016 Phys. Plasmas 23 4014Google Scholar
[22] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp324−326
[23] 程新兵, 刘金亮, 陈蒸, 殷毅, 冯加怀 2009 高电压技术 35 1689Google Scholar
Cheng X B, Liu J L, Chen Z, Yin Y, Feng J H 2009 High Voltage Engineering 35 1689Google Scholar
[24] Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[25] Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar
[26] Go D B, Pohlman D A 2010 J. Appl. Phys. 107 69Google Scholar
[27] Fu Y, Krek J, Zhang P, Verboncoeur J P 2018 Plasma Sources Sci. Technol. 27 095014Google Scholar
[28] Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509Google Scholar
-
-
[1] 何孟兵, 李劲 2000 高电压技术 4 33Google Scholar
He M B, Li J 2000 High Voltage Engineering 4 33Google Scholar
[2] Golnabi H 1992 Rev. Sci. Instrum. 63 5804Google Scholar
[3] Golnabi H, Samimi H 1994 Rev. Sci. Instrum. 65 3030Google Scholar
[4] Mesyats G A 2005 Pulsed Power (New York: Kluwer Academic/ Plenum Publishers) pp29−32
[5] Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar
[6] Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2010 IEEE Trans. Dielectr. Electr. Insul. 17 34Google Scholar
[7] 邵涛, 章程, 王瑞雪 2016 高电压技术 42 685Google Scholar
Shao T, Zhang C, Wang R X 2016 High Voltage Engineering 42 685Google Scholar
[8] Peterkin F E, Williams P F 1989 Proceedings of the 7th Pulsed Power Conference Monterey, USA, June 11−14, 1989 p559
[9] Macgregor S J, Tuema F A, Turnbull S M, Farish O 1997 IEEE Trans. Plasma Sci. 25 118Google Scholar
[10] Osmokrovic P, Arsic N, Lazarevic Z, Kartalovic N 1996 IEEE Trans. Power Delivery 11 858Google Scholar
[11] Arsic N, Osmokrovic P 1996 Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum Berkeley, USA, July 21−26, 1996 p77
[12] Mcphee A J 1995 Proceedings of the 10 th IEEE International Pulsed Power Conference Albuquerque, USA, July 3−6, 1995 p781
[13] Li L, Li C, Xiangdong Q, Fuchang L, Yuan P 2012 J. Appl. Phys. 111 4163Google Scholar
[14] Thoma C, Welch D R, Rose D V, Zimmerman W R, Woodworth J R 2013 19th IEEE Pulsed Power Conference San Francisco, USA, June 16−21, 2013 p1
[15] 徐翱, 杨林, 尚绍环, 金大志, 杜涛, 谈效华 2016 强激光与粒子束 28 055004Google Scholar
Xu A, Yang L, Shang S H, Jin D Z, Du T, Tan X H 2016 High Power Laser and Particle Beams 28 055004Google Scholar
[16] 徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar
Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage Engineering 44 1922Google Scholar
[17] 孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843
Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser and Particle Beams 2012 24 843 (in Chinese)
[18] Larsson A 2012 IEEE Trans. Plasma Sci. 40 243Google Scholar
[19] Asiunin V I, Davydov S G, Dolgov A N, Pshenichniy A A, Yakubov R 2015 Instrum. Exp. Tech. 58 70Google Scholar
[20] 党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛 2015 强激光与粒子束 27 065004Google Scholar
Tang T F, Yi J H, Sun F J, Wang Z G, Jiang X F, Zeng J T 2015 High Power Laser and Particle Beams 27 065004Google Scholar
[21] Huang D, Yang L J, Huo P, Ma J B, Liu S, Wang W, Yao S L 2016 Phys. Plasmas 23 4014Google Scholar
[22] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp324−326
[23] 程新兵, 刘金亮, 陈蒸, 殷毅, 冯加怀 2009 高电压技术 35 1689Google Scholar
Cheng X B, Liu J L, Chen Z, Yin Y, Feng J H 2009 High Voltage Engineering 35 1689Google Scholar
[24] Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar
[25] Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar
[26] Go D B, Pohlman D A 2010 J. Appl. Phys. 107 69Google Scholar
[27] Fu Y, Krek J, Zhang P, Verboncoeur J P 2018 Plasma Sources Sci. Technol. 27 095014Google Scholar
[28] Fu Y, Yang S, Zou X, Luo H, Wang X 2016 Phys. Plasmas 23 093509Google Scholar
Catalog
Metrics
- Abstract views: 6764
- PDF Downloads: 157
- Cited By: 0