Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy

Zhu Te Cao Xing-Zhong

Citation:

Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy

Zhu Te, Cao Xing-Zhong
PDF
HTML
Get Citation
  • An important feature of the irradiation process in nuclear system is the formation of large displacement cascades, in which primary knock-on atoms and secondary particles formed by nuclear reactions generate a considerable number of defects such as dislocations, vacancies and transmutation gases. Predicting and mitigating the adverse effects of damage defect and transmutation hydrogen/helium produced by high-dose neutron irradiation on the mechanical properties of structural materials is the most significant challenge facing the current development of nuclear energy. To solve this problem, understanding the interaction mechanism between hydrogen/helium atoms and micro-defects is a very important breakthrough. Precursors of helium/ hydrogen bubble, small helium/hydrogen-filled vacancy complexes, may play an important role in realizing bubble nucleation, and the formation of these complexes is affected by many factors. However, only a little information about helium/hydrogen-vacancy clusters’ behavior has been obtained in metal/alloy materials. This is mainly limited by the characterization methods, such as the limited resolution of transmission electron microscope (TEM). Helium/hydrogen-vacancy clusters cannot be observed by TEM before the formation of helium bubbles. Applications of positron annihilation to the study of crystal lattice defects started around 1970s, when it was realized that positron annihilation is particularly sensitive to vacancy-type defects and that annihilation properties manifest the nature of each specific type of defect. In recent years, with the continuous development of slow positron beam and the improvement of various experimental testing methods based on slow positron beam, the application of positron annihilation technology has been extended to the research field of hydrogen/helium behavior in metal materials, which plays an important role in studying the hydrogen/helium radiation damage to metal materials. In this review, the basic principles of positron annihilation spectroscopy are briefly discussed and the three most important measurement methods used for hydrogen/helium effect studies are described (i.e. positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), coincidence Doppler broadening spectroscopy (CDBS)). In this paper, the application of positron annihilation spectroscopy to the study of hydrogen/helium behavior in metal materials is reviewed in combination with the reported relevant developments (including our research group’s achieve-ments). The advantages of three commonly used measurement methods in the following specific studies are highlighted: 1) The estimation of bubble size and concentration; 2) irradiation damage induced by hydrogen/helium; 3) the evolution behavior of irradiation-induced defects in the heat treatment process; 4) sy-nergistic effect of hydrogen and helium.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    [1]

    Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar

    [2]

    Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar

    [3]

    Cook I 2006 Nature Mater. 5 77Google Scholar

    [4]

    Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478

    [5]

    Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar

    [6]

    Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar

    [7]

    Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar

    [8]

    Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar

    [9]

    Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar

    [10]

    Johnson W H 1975 Proceedings of the Royal Society of London 23 168

    [11]

    Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar

    [12]

    Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar

    [13]

    Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar

    [14]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar

    [15]

    He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar

    [16]

    Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar

    [17]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar

    [18]

    Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar

    [19]

    Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar

    [20]

    Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar

    [21]

    Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar

    [22]

    Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar

    [23]

    Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar

    [24]

    Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar

    [25]

    Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar

    [26]

    Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar

    [27]

    Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar

    [28]

    Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar

    [29]

    Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar

    [30]

    Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar

    [31]

    Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar

    [32]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [33]

    van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar

    [34]

    Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar

    [35]

    Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar

    [36]

    Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar

    [37]

    Bai X M, Voter A F 2010 Science 327 1631Google Scholar

    [38]

    Ackland G 2010 Science 327 1587Google Scholar

    [39]

    Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar

    [40]

    胡远超 2016 硕士学位论文 (郑州: 郑州大学)

    Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [41]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar

    [42]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar

    [43]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar

    [44]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar

    [45]

    Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294

    [46]

    Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar

    [47]

    Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar

    [48]

    Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar

    [49]

    Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar

    [50]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [51]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [52]

    Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar

    [53]

    Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar

    [54]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [55]

    Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [56]

    朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar

    Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar

    [57]

    Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar

    [58]

    Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [59]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar

    [60]

    Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar

    [61]

    Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar

    [62]

    Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177

    [64]

    Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar

    [65]

    Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar

    [66]

    Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar

  • 图 1  DBS中参数的定义

    Figure 1.  The parameter definition in the Doppler broadening spectrum.

    图 2  纯铁的CDB与一维多普勒展宽能谱比较

    Figure 2.  Peak-to-valley ratio of CDB system in the pure iron.

    图 3  金属钨中单个空位包含单个氢原子时的正电子波函数[26] (a) 三维立体图; (b)等高线图

    Figure 3.  Calculated localized wave function of a positron trapped in a mono-vacancy bound with one hydrogen atom in tungsten[26]: (a) Isometric plot; (b) contour plot.

    图 4  不同尺寸的氢氦-空位复合体中正电子寿命[26]

    Figure 4.  Calculated positron lifetime in nano-void containing 1 V, 2 V, 6 V, and various H/He atoms[26].

    图 5  SRIM模拟氢氦离子辐照低活化钢导致的辐照损伤及氢/氦浓度深度分布

    Figure 5.  Profiles of damage and atom concentration in RAFM steel irradiated with 250 keV He2+ and 130 keV H+ calculated with SRIM.

    图 6  VEPFIT拟合氢氦辐照样品的S参数随注入深度的变化

    Figure 6.  Fitted S parameters versus VEPFIT for irradiated samples.

    图 7  氦辐照Fe17Cr14.5Ni等时退火过程S-E曲线随温度变化过程[34]

    Figure 7.  Variation of S parameters versus incident positron energy for He+ irradiated Fe17Cr14.5Ni alloy during isochronal annealing[34].

    图 8  氢辐照FeCu等时退火过程ΔS-E曲线随温度变化过程[35]

    Figure 8.  Evolution of the S parameters in H-ions irradiated FeCu alloys during isochronal annealing[35].

    图 9  氢离子辐照FeCu等时退火过程S-W参数的变化[35]

    Figure 9.  S-W plots for the H-ions irradiated samples during isochronal annealing[35].

    图 10  Fe9Cr合金氦离子辐照前后S (∆S)参数随正电子注入能量的变化[36]

    Figure 10.  S-parameter and ∆S as a function of positron incident energy (mean implantation depth) in irradiated Fe9Cr alloys and for unirradiated specimen[36].

    图 11  Fe9Cr合金氦离子辐照前后S-W的变化[36]

    Figure 11.  W-parameter as a function of the S-parameter for irradiated Fe9Cr alloys and for unirradiated one[36].

    图 12  氦离子注入充分退火和形变的纯铁样品 S-E曲线变化[39]

    Figure 12.  Evolution of the S parameters in well-annealed Fe and deformed Fe with He-ions irradiation[39].

    图 13  氦离子辐照不同形变量的304不锈钢辐照前后S-E曲线变化[40]

    Figure 13.  S-E curves for deformed 304 steel irradiated with He-ions[40].

    图 14  氢氦离子辐照RAFM钢正电子慢束结果[47]

    Figure 14.  S-parameter (a) and ∆S/S (b) as a function of incident positron energy. ∆SHe + ∆SH and ∆SHe + H parameter were also shown in (c)[47].

    图 15  高能Ar辐照W合金注氘前后的正电子慢束结果[48]

    Figure 15.  The S parameter versus depth in the argon-damaged tungsten samples (0/1/6 dpa) with and without deuterium plasma exposure[48].

    图 16  高能Au辐照多晶W样品注氦前后(a) S-D (深度)曲线, (b) S-W 曲线[49]

    Figure 16.  (a) The S parameter versus depth in the tungsten samples, and the (S, W) plots are shown in (b)[49].

    图 17  形变316 L钢样品低能高剂量氦等离子体辐照前后的S-E曲线[52]

    Figure 17.  Evolution of S-E curves in deformed 316 L steel exposed to high flux and low energy helium plasma[52].

    图 18  氦辐照前后Fe9Cr合金中W参数随正电子能量的变化

    Figure 18.  Evolution of the W parameters in Fe9Cr alloy with He-ions irradiation.

    图 19  注量为1 × 1015和1 × 1016 He+/cm2的氦辐照Fe9Cr样品CDB测试曲线[63]

    Figure 19.  CDB ratio curves for the Fe9Cr alloy irradiated with a dose of 1 × 1015 and 1 × 1016 He+/cm2[63].

    图 20  氦或中子辐照的纯Ni(a)和Cu(b)样品的CDB测试曲线[66]

    Figure 20.  CDB ratio curves for the Ni irradiated with He-ions (a) and for the Cu irradiated with neutron[66](b).

    图 21  氦辐照的316L样品退火前后的CDB测试曲线

    Figure 21.  CDB ratio curves for the He-ions irradiated 316L samples during isochronal annealing.

    Baidu
  • [1]

    Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar

    [2]

    Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar

    [3]

    Cook I 2006 Nature Mater. 5 77Google Scholar

    [4]

    Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478

    [5]

    Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar

    [6]

    Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar

    [7]

    Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar

    [8]

    Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar

    [9]

    Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar

    [10]

    Johnson W H 1975 Proceedings of the Royal Society of London 23 168

    [11]

    Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar

    [12]

    Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar

    [13]

    Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar

    [14]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar

    [15]

    He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar

    [16]

    Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar

    [17]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar

    [18]

    Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar

    [19]

    Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar

    [20]

    Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar

    [21]

    Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar

    [22]

    Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar

    [23]

    Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar

    [24]

    Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar

    [25]

    Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar

    [26]

    Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar

    [27]

    Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar

    [28]

    Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar

    [29]

    Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar

    [30]

    Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar

    [31]

    Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar

    [32]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [33]

    van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar

    [34]

    Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar

    [35]

    Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar

    [36]

    Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar

    [37]

    Bai X M, Voter A F 2010 Science 327 1631Google Scholar

    [38]

    Ackland G 2010 Science 327 1587Google Scholar

    [39]

    Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar

    [40]

    胡远超 2016 硕士学位论文 (郑州: 郑州大学)

    Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [41]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar

    [42]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar

    [43]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar

    [44]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar

    [45]

    Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294

    [46]

    Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar

    [47]

    Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar

    [48]

    Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar

    [49]

    Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar

    [50]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [51]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [52]

    Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar

    [53]

    Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar

    [54]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [55]

    Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [56]

    朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar

    Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar

    [57]

    Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar

    [58]

    Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [59]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar

    [60]

    Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar

    [61]

    Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar

    [62]

    Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177

    [64]

    Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar

    [65]

    Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar

    [66]

    Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar

  • [1] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui. Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips. Acta Physica Sinica, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong. Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials. Acta Physica Sinica, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [3] Dan Min, Chen Lun-Jiang, He Yan-Bin, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Yin, Jin Fan-Ya. Defect Evolution in Y0.5Gd0.5Ba2Cu3O7-δ Layer by H Ion Irradiation. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] Dong Ye, Zhu Te, Song Ya-Min, Ye Feng-Jiao, Zhang Peng, Yang Qi-Gui, Liu Fu-Yan, Chen Yu, Cao Xing-Zhong. Effect of dislocation on helium irradiation defects in low-activation martensitic steel. Acta Physica Sinica, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [5] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [6] Dan Min, Chen Lun-Jiang, He Yan-Bin, Lü Xing-Wang, Wan Jun-Hao, Zhang Hong, Zhang Ke-Jia, Yang Ying, Jin Fan-Ya. Defect evolution in Y0.5Gd0.5Ba2Cu3O7–δ superconducting layer irradiated by H+ ions. Acta Physica Sinica, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [7] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [9] Hu Yuan-Chao, Cao Xing-Zhong, Li Yu-Xiao, Zhang Peng, Jin Shuo-Xue, Lu Er-Yang, Yu Run-Sheng, Wei Long, Wang Bao-Yi. Applications and progress of slow positron beam technique in the study of metal/alloy microdefects. Acta Physica Sinica, 2015, 64(24): 247804. doi: 10.7498/aps.64.247804
    [10] Zhang Li-Juan, Zhang Chuan-Chao, Liao Wei, Liu Jian-Dang, Gu Bing-Chuan, Yuan Xiao-Dong, Ye Bang-Jiao. Influence of deuteration on the KH2PO4 crystal micro-defects characterization by using positron annihilation spectroscopy. Acta Physica Sinica, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [11] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [12] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [13] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [14] Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Chen Zhi-Quan. Positron annihilation study of the microstructure of Co doped ZnO nanocrystals. Acta Physica Sinica, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [15] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [16] Zhou Kai, Li Hui, Wang Zhu. Defects in proton-irradiated Zn-doped GaSb studied by positron annihilation and photoluminescence. Acta Physica Sinica, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [17] Wang Hai-Yun, Weng Hui-Min, Ling C. C.. Study of GaN/SiC contact using slow positron beam. Acta Physica Sinica, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [18] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [19] Wang Hai-Yan, Zhu Wen-Jun, Song Zhen-Fei, Liu Shao-Jun, Chen Xiang-Rong, He Hong-Liang. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] LIU LI-HUA, DONG CHENG, DENG DONG-MEI, CHEN ZHEN-PING, ZHANG JIN-CANG. POSITRON ANNIHILATION STUDY OF THE STRUCTUREAND CLUSTERS IN Fe-DOPED YBCO. Acta Physica Sinica, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
Metrics
  • Abstract views:  9522
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2020
  • Accepted Date:  18 June 2020
  • Available Online:  25 August 2020
  • Published Online:  05 September 2020

/

返回文章
返回
Baidu
map