Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications and progress of slow positron beam technique in the study of metal/alloy microdefects

Hu Yuan-Chao Cao Xing-Zhong Li Yu-Xiao Zhang Peng Jin Shuo-Xue Lu Er-Yang Yu Run-Sheng Wei Long Wang Bao-Yi

Citation:

Applications and progress of slow positron beam technique in the study of metal/alloy microdefects

Hu Yuan-Chao, Cao Xing-Zhong, Li Yu-Xiao, Zhang Peng, Jin Shuo-Xue, Lu Er-Yang, Yu Run-Sheng, Wei Long, Wang Bao-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent decades, the positron annihilation spectroscopy technique has been used to characterize the microdefects of materials due to its advantages of non-destruction and high sensitivity on an atomic level. Positron annihilation spectroscopy technique is widely used in the microstructure study of thin film material surface and interface due to the rapid development of the slow positron beam technology. The slow positron beam technique can provide depth distribution information about material surface microstructure. Therefore, it is widely used to study the distributed defect concentrations in crystalline materials and the properties of thin films, surfaces and interfaces of layered materials. This article summarizes the slow positron beam technique applications and progress in the study of metal alloy materials. Firstly, this article introduces the slow positron beam technology development and application research achievement in detail. Secondly, it provides how to acquire the slow positron beam, introduces some kinds of and the principles of experimental measurements, and the major methods include Doppler bradening spectroscopy, coincidence Doppler broadening and PL. Thirdly, according to the defects induced by different ways, the latest experimental results about the material internal microdefect formation mechanism, evolution mechanism, defect feature research, such as microstructure, chemical environment, electron density and momentum distribution are introduced. The methods of inducing defects mainly include irradiation, physical deformation and chemical corrosion. Particles irradiation can be classified as four parts according to the different types of particles. In addition, monolayer and multilayer thin films have also been summarized. Finally, the new technique of thermal desorption spectroscopy and experimental measurements of age-momentum correlation are proposed. We can know that positron annihilation spectroscopy technology is a very special and effective nuclear spectroscopy analysis method in material microstructure study, and the slow positron beam technique makes it possible to study the depth distribution information about the thin film material surface microstructure. There is no doubt that this technique will play a huge role in the progress of material science and the creation of industrial material.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 19927001, 19805010, 10835006, 10275076, 91226103, 91026006, 11475193).
    [1]

    Wu Y C, Zhang X H 2000 Physics 29 401 (in Chinese) [吴奕初, 张晓红 2000 物理 29 401]

    [2]

    Teng M K, Shen D X, Xia Y F 2000 Positron Annihilation Spectroscopy and Application (Beijing: Atomic Energy Press) pp4-18 (in Chinese) [滕敏康, 沈德勋, 夏元复2003正电子湮没谱学及其应用 (北京:原子能出版社) 第4–18页]

    [3]

    Liu J D, Zhang J, Zhang L J, Hao Y P, Guo W F, Cheng B, Ye B J 2011 Chin. Phys. B 20 057802

    [4]

    Huang S J, Pan Z W, Liu J D, Han R D, Ye B J 2015 Chin. Phys. B 24 107803

    [5]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103 (in Chinese) [张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉2013 62 117103]

    [6]

    Liu J D, Cheng B, Zhang J, Zhang L J, Weng H M, Ye B J 2011 Chin. Phys. B 20 108105

    [7]

    Peng C X, Wang K F, Zhang Yang, Guo F L, Weng H M, Ye B J 2009 Chin. Phys. B 18 2072

    [8]

    Cao X Z, Wang B Y, Zhang Z M, Wei C F, Zhang T B, Xue D S, Wei L 2004 Nucl. Tech. 27 435 (in Chinese) [曹兴忠, 王宝义, 章志明, 魏存峰, 张天保, 薛德胜, 魏龙 2004 核技术 27 435]

    [9]

    Wang P, Cao X Z, Ma Y Y, Qin X B, Wang B Y, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 1036 (in Chinese) [王平, 曹兴忠, 马雁云, 秦秀波, 王宝义, 马创新, 魏龙2006高能物理与核物理 30 1036]

    [10]

    Cao X Z, Wang B Y, Wang P, Ma Y Y, Qin X B,Wei L 2006 High Energ. Phys. Nucl. 30 1196 (in Chinese) [曹兴忠, 王宝义, 王平, 马雁云, 秦秀波, 魏龙 2006 高能物理与核物理 30 1196]

    [11]

    Han R D, Ye B J, Weng H M, Zhou X Y, Fan Y M, Du J F 1999 Prog. Phys. 3 217 (in Chinese) [韩荣典, 叶邦角, 翁惠民, 周先意, 范扬眉, 杜江峰 1999 物理学进展 3 217]

    [12]

    Weng H M, Zhou X Y, Ye B J, Du J F, Han R D 2000 Physics 5 308 (in Chinese) [翁惠民, 周先意, 叶邦角, 杜江峰, 韩荣典 2000 物理 5 308]

    [13]

    Bazant P, Kuritka I, Munster L, Kalina L 2015 Cellulose 22 1275

    [14]

    Dinh L N, McCall S K, Saw C K, Haschke J M, Allen P G, McLean W 2014 J. Nucl. Mater. 451 143

    [15]

    Gao D Z, Grenz J, Watkins M B, Canova F F, Schwrz A, Wiesendanger R, Shluger A L 2014 ACS Nano 8 5

    [16]

    Hu J, Garner A, Ni N, Gholinia A, Nicholls R J, Lozano-Perez S, Frankel P, Preuss M, Grovenor Chris R M 2015 Micron 69 35

    [17]

    Romankov S, Park Y C 2015 J. Alloy. Compd. 619 417

    [18]

    Shen C H, Huang L, Lin Z, Shen S Y, Wang Q, Su H, Fu F, Zheng X M 2014 Appl. Mater. Inter. 6 13271

    [19]

    Merzliki Sergiy V, Borodin S, Vogel D, Rohwerder M 2015 Talant 136 108

    [20]

    Wang F L, Hong M, Xu L D, Geng Z R 2015 Progress in Chemistry 27 571 (in Chinese) [王方丽, 洪敏, 许丽丹, 耿志荣 2015 化学进展 27 251]

    [21]

    Dalai M K, Sekhar B R, Biswas D, Thakur S, Chiang T C, Samal D, Martin C, Maiti K 2014 Phys. Rev. B 89 245131

    [22]

    Liu M, Sternbach A J, Wagner M, Slusar T V, Kong T, Bud,ko S L, Kittiwatanakul S, Qazilbash M M, McLeod A, Fei Z, Abreu E, Zhang J, Goldflam M, Dai S, Ni G X, Lu J, Bechtel H A, Martin M C, Raschke M B, Averitt R D, Wolf S A, Kim H T, Canfield P C, Basov D N 2015 Phys. Rev. B 91 245155

    [23]

    Sideris P J, Blanc F, Gan Z, Gery C P 2012 Chem. Mater. 24 2449

    [24]

    Zhang Z B, Ye B J, Weng H M, Peng L, Liu J D, Lou J, FDS T 2009 Nucl. Sci. Eng. 3 273 (in Chinese) [章征栢, 叶邦角, 翁惠民, 彭蕾, 刘建党, 楼捷, FDS团队 2009 核科学与工程 3 273]

    [25]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Wei L 2004 13th International Conference on Positron Annihilation Kyoto, Japan, September 7-12, 2004 p513

    [26]

    Wang S J 2008 Application of Positron Spectroscopy (Wuhan: Hunan Science and Technology Press) p24 (in Chinese) [王少阶 2008应用正电子谱学 (武汉: 湖南科学技术出版社) 第24页]

    [27]

    Wrschum R, Farber P, Dittmar R, Scharwaechter P, Frank W, Schaefer H E 1997 Phys. Rev. Lett. 79 4918

    [28]

    Badura G K, Schaefer H E 1997 Phys. Rev. B 56 3032

    [29]

    Kamimura Y, Tsutsumi T, Kuramoto E 1997 J. Phys. Soc. Jpn. 66 3090

    [30]

    Ueno K, Ohmura M, Kimura M, Kamimura Y, Takenaka M, Tsutsumi T, Ohsawa K, Abe H, Kuramoto E 1997 11th International Conference on Positron Annihilation Kansas City, Missouri, May 25-30, 1997 p430

    [31]

    Sabelová V, Krşjak V, Kuriplach J, Petriska M, Slugeň V, Šimeg Veterníková J 2014 J. Nucl. Mater. 450 54

    [32]

    Wen Y M, Jin S X, Yang Z, Luo F F, Zheng Z C, Guo L P, Suo J P 2015 Radiat. Phys. Chem. 107 19

    [33]

    Liu X B, Wang R S, Jiang J, Wu Y C, Zhang C H, Ren A, Xu C L, Qian W J 2014 J. Nucl. Mater. 451 249

    [34]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120

    [35]

    Wang P 2007 Ph. D. Dissertation (Beijing: Graduate School of Chinese Academy of Sciences) (in Chinese) [王平2007 博士学位论文 (北京: 中国科学院研究生院)]

    [36]

    Wang Q Z, Yu R S, Qin X B, Li Y X, Wang B Y, Jia Q J 2009 Acta Phys. Sin. 58 8478 (in Chinese) [王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰 2009 58 8478]

    [37]

    Uedono A, Yonenaga I, Watanabe T, Kimura S, Oshima N, Suzuki R, Ishibashi S, Ohno Y 2013 J. Appl. Phys. 114 084506

    [38]

    Dupasquiera A, Kögel G, Somoza A 2004 Acta Mater. 52 4707

    [39]

    Ken-ichi F, Hideki M, Hideaki O, Zheng T, Yasuyoshi N, Masayuki H 2008 J. Nucl. Mater. 373 289

    [40]

    Zhou L, Liang H, Xiong T 2009 Nucl. Technol. 32 695 (in Chinese) [周雷, 梁昊, 熊涛 2009 核技术 32 695]

    [41]

    Hutchings M, Hobbs C 1996 Mater. World 4 391

    [42]

    Lynn K G, Golang A N 1976 Solid State Commun. 18 1579

    [43]

    MacKenzie I K, Khoo T L, McDonald A B, McKee B T A 1967 Phys. Rev. Lett. 19 946

    [44]

    Thomas M H, Goland A N, Snead Jr C L 1974 Phys. Rev. B 10 3062

    [45]

    Dunlap R A, Lawther D W, March R H 1987 J. Phys. F: Met. Phys. 17 L39

    [46]

    Dunlap R A, Kyriakidis J, Wang Z, Lawther D W 1996 Nucl. Instrum. Meth. B 108 339

    [47]

    Nagai Y, Nonaka T, Hasegawa M, Kobayashi Y, Wang C L, Zheng W, Zhang C 1999 Phys. Rev. B 60 11863

    [48]

    Nagai Y, Murayama M, Tang Z, Nonaka T, Hono K, Hasegawa M 2001 Acta Mater. 49 913

    [49]

    Yu J N 2007 Effect of Material Irradiated (Beijing: Chemical Industry Press) p512 (in Chinese) [郁金南 2007材料辐照效应 (北京: 化学工业出版社) 第512页]

    [50]

    Barthe M F, Labrim H, Gentils A, Desgardin P, Corbel C, Esnouf S, Piron J P 2007 Phys. Stat. Sol. C 4 3627

    [51]

    Yabuuchi A, Maekawa M, Kawasuso A 2011 J. Nucl. Mater. 419 9

    [52]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202

    [53]

    Wan Q M, Shu G G, Wang R S, Ding H, Peng X, Zhang Q, Lei J 2012 Nucl. Instrum. Meth. B 287 148

    [54]

    Wei Q, Liu H, He S Y, Hao X P, Wei L 2006 Acta Phys. Sin. 55 5525 (in Chinese) [魏强, 刘海, 何世禹, 郝小鹏, 魏龙 2006 55 5525]

    [55]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115

    [56]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326

    [57]

    Zhu H P, Wang Z G, Gao X, Cui M H, Li B S, Sun J R, Yao C F, Wei K F, Shen T L, Pang L L, Zhu Y B, Li Y F, Wang J, Song P, Zhang P, Cao X Z 2015 Nucl. Instrum. Meth. B 344 5

    [58]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conf. Ser. 443 012017

    [59]

    David C, Panigrahi B K, Amarendra G, Abhaya S, Balaji S, Balamurugan A K, Nair K G M, Viswanathan B, Sundar C S, Raj B 2009 Surf. Coat. Technol. 203 2363

    [60]

    Amarendra G, Panigrahi B K, Abhaya S, David C, Rajaraman R, Nair K G M, Sundar C S, Raj B 2008 Appl. Surf. Sci. 255 139

    [61]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]

    [62]

    Veternikova J S, Slugen V, Sojak S, Skarba M, Korhonen E, Stancek S, Degmova J, Sabelova V, Bartosova L 2014 J. Nucl. Mater. 450 99

    [63]

    Lu E Y, Cao X Z, Jin S X, Zhang P, Zhang C X, Yang J, Wu Y R, Guo L P, Wang B Y 2015 J. Nucl. Mater. 458 240

    [64]

    Li Y F, Shen T L, Gao X, Gao N, Yao C F, Sun J R, Wei K F, Li B S, Zhang P, Cao X Z, Zhu Y B, Pang L L, Cui M H, Chang H L, Wang J, Zhu H P, Wang D, Song P, Sheng Y B, Zhang H P, Hu B T, Wang Z G 2014 Chin. Phys. Lett. 31 036101

    [65]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum. Meth. B 267 3162

    [66]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120

    [67]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y X, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101

    [68]

    Mostafa M K, Baerdemaeker J D, Caenegem N V, Segers D, Houbaert Y 2008 Appl. Surf. Sci. 255 145

    [69]

    Holzwarth U, Barbieri A, Hansen-Ilzhöfer S, Schaaff P, Haaks M 2001 Appl. Phys. A: Mater. 73 467

    [70]

    Dryzek E, Sarnek M, Wróbel M 2014 J. Mater. Sci. 490 8449

    [71]

    Onitsuka T, Takenaka M, Kuramoto E, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204

    [72]

    He S M, Brandhoff P N, Schut H, van der Zwang S, van Dijk N H 2013 J. Mater. Sci. 48 6150

    [73]

    He S M, Dijk N H, Schut H, Peekstok E R, Zwaag S 2010 Phys. Rev. B 81 094103

    [74]

    Zhu Z J, Yao M Y, Xue X D, Wu Y C, Zhou B X 2014 J. Phys.: Conf. Ser. 505 012008

    [75]

    Wu X, Asoka-Kumar P, Lynn K G, Hebert K R 1994 J. Electrochem. Soc. 141 3361

    [76]

    Wu Y C, Li P H, Xue X D, Wang S J, Kallis A, Coleman P G, Zhai T 2011 J. Phys.: Conf. Ser. 262 012065

    [77]

    Wu Y C, Zhai T, Coleman P G 2012 Symposium on Fatigue and Corrosion Damage in Metallic Materials San Diego, CA, Feb. 27-Mar. 3, 2011 p2823

    [78]

    Liu Y F, Yang W, Qin Q L, Wu Y C, Wen W, Zhai T, Yu B, Li D Y, Luo A, Song G L 2014 Corros. Sci. 81 65

    [79]

    Wu Y C, Chen Y Q, Wang B, Wang S J, Jean Y C, Suzuki R, Ohdaira T 2005 10th International Workshop on Slow Positron Beam Techniques for Solids and Surfaces Univ. Qatar, Doha, QATAR, Mar. 19-25, 2005 p3274

    [80]

    Wu Y C, Zhang R, Chen H, Li Y, Zhang J, Zhu D M, Jean Y C 2002 7th International Workshop on Positron and Positronium Chemistry Knoxville, TN, July 7-12, 2002 p599

    [81]

    Khaled M M, Yilbas B S, Al-Qaradawi I Y, Coleman P G, Abdulmalik D, Seddigi Z S, Abulkibash A, Abu-Sharkh B F, Emad M M 2006 Surf. Coat. Technol. 201 932

    [82]

    Pikart P, Hugenschmidt C, Horisberger M, Matsukawa Y, Hatakeyama M, Toyama T, Nagai Y 2011 Phys. Rev. B 84 014106

    [83]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309

    [84]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloy. Compd. 587 515

    [85]

    Raghavan G, Venugopal Rao G, Amarendra G, Tyagi A K, Viswanathan B 2001 Appl. Surf. Sci. 178 75

    [86]

    Uedono A, Kirimura T, Wilson C J, Croes K, Demuynck S, Tokei Z, Oshima N, Suzuki R 2013 J. Appl. Phys. 114 074510

    [87]

    Yang A L, Song H P, Liang D C, Wei H Y, Liu X L, Jin P, Qin X B, Yang S Y, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 96 151904

    [88]

    Anastasopol A, Eijt S W H, Schut H, Mulder F M, Plazaola F, Dam B 2012 7th International Workshop on Positron Studies of Defects (PSD) Delft Univ. Technol, Delft, Netherlands, Aug. 28-Sep. 2, 2011 p16

    [89]

    Uedonoa A, Suzuki T, Nakamura T, Ohdaira T, Suzuki R 2005 J. Appl. Phys. 98 043504

    [90]

    Uedono A, Yamashita Y, Tsutsui T, Dordi Y, Li S, Oshima N, Suzuki R 2012 J. Appl. Phys. 111 104506

    [91]

    Keeblea D J, Krishnan A, Friessnegg T, Nielsen B, Madhukar S, Aggarwal S, Ramesh R, Poindexter E H 1998 Appl. Phys. Lett. 73 508

    [92]

    Zhao C J, Ding L, Zhao Z D, Zhang P, Cao X Z, Wang B Y, Zhang J Y, Yu G H 2013 Appl. Phys. A 116 845

    [93]

    Zhao C J, Lu X A, Zhao Z D, Li M H, Zhang P, Wang B Y, Cao X Z, Zhang J Y, Yu G H 2013 J. Appl. Phys. 114 113903

    [94]

    Zhao C J, Liu Y, Zhang J Y, Sun L, Ding L, Zhang P, Wang B Y, Cao X Z, Yu G H 2012 Appl. Phys. Lett. 101 072404

    [95]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522

    [96]

    Sharma S K, Sudarshan K, Pujari P K 2014 RSC Adv. 4 14733

  • [1]

    Wu Y C, Zhang X H 2000 Physics 29 401 (in Chinese) [吴奕初, 张晓红 2000 物理 29 401]

    [2]

    Teng M K, Shen D X, Xia Y F 2000 Positron Annihilation Spectroscopy and Application (Beijing: Atomic Energy Press) pp4-18 (in Chinese) [滕敏康, 沈德勋, 夏元复2003正电子湮没谱学及其应用 (北京:原子能出版社) 第4–18页]

    [3]

    Liu J D, Zhang J, Zhang L J, Hao Y P, Guo W F, Cheng B, Ye B J 2011 Chin. Phys. B 20 057802

    [4]

    Huang S J, Pan Z W, Liu J D, Han R D, Ye B J 2015 Chin. Phys. B 24 107803

    [5]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103 (in Chinese) [张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉2013 62 117103]

    [6]

    Liu J D, Cheng B, Zhang J, Zhang L J, Weng H M, Ye B J 2011 Chin. Phys. B 20 108105

    [7]

    Peng C X, Wang K F, Zhang Yang, Guo F L, Weng H M, Ye B J 2009 Chin. Phys. B 18 2072

    [8]

    Cao X Z, Wang B Y, Zhang Z M, Wei C F, Zhang T B, Xue D S, Wei L 2004 Nucl. Tech. 27 435 (in Chinese) [曹兴忠, 王宝义, 章志明, 魏存峰, 张天保, 薛德胜, 魏龙 2004 核技术 27 435]

    [9]

    Wang P, Cao X Z, Ma Y Y, Qin X B, Wang B Y, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 1036 (in Chinese) [王平, 曹兴忠, 马雁云, 秦秀波, 王宝义, 马创新, 魏龙2006高能物理与核物理 30 1036]

    [10]

    Cao X Z, Wang B Y, Wang P, Ma Y Y, Qin X B,Wei L 2006 High Energ. Phys. Nucl. 30 1196 (in Chinese) [曹兴忠, 王宝义, 王平, 马雁云, 秦秀波, 魏龙 2006 高能物理与核物理 30 1196]

    [11]

    Han R D, Ye B J, Weng H M, Zhou X Y, Fan Y M, Du J F 1999 Prog. Phys. 3 217 (in Chinese) [韩荣典, 叶邦角, 翁惠民, 周先意, 范扬眉, 杜江峰 1999 物理学进展 3 217]

    [12]

    Weng H M, Zhou X Y, Ye B J, Du J F, Han R D 2000 Physics 5 308 (in Chinese) [翁惠民, 周先意, 叶邦角, 杜江峰, 韩荣典 2000 物理 5 308]

    [13]

    Bazant P, Kuritka I, Munster L, Kalina L 2015 Cellulose 22 1275

    [14]

    Dinh L N, McCall S K, Saw C K, Haschke J M, Allen P G, McLean W 2014 J. Nucl. Mater. 451 143

    [15]

    Gao D Z, Grenz J, Watkins M B, Canova F F, Schwrz A, Wiesendanger R, Shluger A L 2014 ACS Nano 8 5

    [16]

    Hu J, Garner A, Ni N, Gholinia A, Nicholls R J, Lozano-Perez S, Frankel P, Preuss M, Grovenor Chris R M 2015 Micron 69 35

    [17]

    Romankov S, Park Y C 2015 J. Alloy. Compd. 619 417

    [18]

    Shen C H, Huang L, Lin Z, Shen S Y, Wang Q, Su H, Fu F, Zheng X M 2014 Appl. Mater. Inter. 6 13271

    [19]

    Merzliki Sergiy V, Borodin S, Vogel D, Rohwerder M 2015 Talant 136 108

    [20]

    Wang F L, Hong M, Xu L D, Geng Z R 2015 Progress in Chemistry 27 571 (in Chinese) [王方丽, 洪敏, 许丽丹, 耿志荣 2015 化学进展 27 251]

    [21]

    Dalai M K, Sekhar B R, Biswas D, Thakur S, Chiang T C, Samal D, Martin C, Maiti K 2014 Phys. Rev. B 89 245131

    [22]

    Liu M, Sternbach A J, Wagner M, Slusar T V, Kong T, Bud,ko S L, Kittiwatanakul S, Qazilbash M M, McLeod A, Fei Z, Abreu E, Zhang J, Goldflam M, Dai S, Ni G X, Lu J, Bechtel H A, Martin M C, Raschke M B, Averitt R D, Wolf S A, Kim H T, Canfield P C, Basov D N 2015 Phys. Rev. B 91 245155

    [23]

    Sideris P J, Blanc F, Gan Z, Gery C P 2012 Chem. Mater. 24 2449

    [24]

    Zhang Z B, Ye B J, Weng H M, Peng L, Liu J D, Lou J, FDS T 2009 Nucl. Sci. Eng. 3 273 (in Chinese) [章征栢, 叶邦角, 翁惠民, 彭蕾, 刘建党, 楼捷, FDS团队 2009 核科学与工程 3 273]

    [25]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Wei L 2004 13th International Conference on Positron Annihilation Kyoto, Japan, September 7-12, 2004 p513

    [26]

    Wang S J 2008 Application of Positron Spectroscopy (Wuhan: Hunan Science and Technology Press) p24 (in Chinese) [王少阶 2008应用正电子谱学 (武汉: 湖南科学技术出版社) 第24页]

    [27]

    Wrschum R, Farber P, Dittmar R, Scharwaechter P, Frank W, Schaefer H E 1997 Phys. Rev. Lett. 79 4918

    [28]

    Badura G K, Schaefer H E 1997 Phys. Rev. B 56 3032

    [29]

    Kamimura Y, Tsutsumi T, Kuramoto E 1997 J. Phys. Soc. Jpn. 66 3090

    [30]

    Ueno K, Ohmura M, Kimura M, Kamimura Y, Takenaka M, Tsutsumi T, Ohsawa K, Abe H, Kuramoto E 1997 11th International Conference on Positron Annihilation Kansas City, Missouri, May 25-30, 1997 p430

    [31]

    Sabelová V, Krşjak V, Kuriplach J, Petriska M, Slugeň V, Šimeg Veterníková J 2014 J. Nucl. Mater. 450 54

    [32]

    Wen Y M, Jin S X, Yang Z, Luo F F, Zheng Z C, Guo L P, Suo J P 2015 Radiat. Phys. Chem. 107 19

    [33]

    Liu X B, Wang R S, Jiang J, Wu Y C, Zhang C H, Ren A, Xu C L, Qian W J 2014 J. Nucl. Mater. 451 249

    [34]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120

    [35]

    Wang P 2007 Ph. D. Dissertation (Beijing: Graduate School of Chinese Academy of Sciences) (in Chinese) [王平2007 博士学位论文 (北京: 中国科学院研究生院)]

    [36]

    Wang Q Z, Yu R S, Qin X B, Li Y X, Wang B Y, Jia Q J 2009 Acta Phys. Sin. 58 8478 (in Chinese) [王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰 2009 58 8478]

    [37]

    Uedono A, Yonenaga I, Watanabe T, Kimura S, Oshima N, Suzuki R, Ishibashi S, Ohno Y 2013 J. Appl. Phys. 114 084506

    [38]

    Dupasquiera A, Kögel G, Somoza A 2004 Acta Mater. 52 4707

    [39]

    Ken-ichi F, Hideki M, Hideaki O, Zheng T, Yasuyoshi N, Masayuki H 2008 J. Nucl. Mater. 373 289

    [40]

    Zhou L, Liang H, Xiong T 2009 Nucl. Technol. 32 695 (in Chinese) [周雷, 梁昊, 熊涛 2009 核技术 32 695]

    [41]

    Hutchings M, Hobbs C 1996 Mater. World 4 391

    [42]

    Lynn K G, Golang A N 1976 Solid State Commun. 18 1579

    [43]

    MacKenzie I K, Khoo T L, McDonald A B, McKee B T A 1967 Phys. Rev. Lett. 19 946

    [44]

    Thomas M H, Goland A N, Snead Jr C L 1974 Phys. Rev. B 10 3062

    [45]

    Dunlap R A, Lawther D W, March R H 1987 J. Phys. F: Met. Phys. 17 L39

    [46]

    Dunlap R A, Kyriakidis J, Wang Z, Lawther D W 1996 Nucl. Instrum. Meth. B 108 339

    [47]

    Nagai Y, Nonaka T, Hasegawa M, Kobayashi Y, Wang C L, Zheng W, Zhang C 1999 Phys. Rev. B 60 11863

    [48]

    Nagai Y, Murayama M, Tang Z, Nonaka T, Hono K, Hasegawa M 2001 Acta Mater. 49 913

    [49]

    Yu J N 2007 Effect of Material Irradiated (Beijing: Chemical Industry Press) p512 (in Chinese) [郁金南 2007材料辐照效应 (北京: 化学工业出版社) 第512页]

    [50]

    Barthe M F, Labrim H, Gentils A, Desgardin P, Corbel C, Esnouf S, Piron J P 2007 Phys. Stat. Sol. C 4 3627

    [51]

    Yabuuchi A, Maekawa M, Kawasuso A 2011 J. Nucl. Mater. 419 9

    [52]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202

    [53]

    Wan Q M, Shu G G, Wang R S, Ding H, Peng X, Zhang Q, Lei J 2012 Nucl. Instrum. Meth. B 287 148

    [54]

    Wei Q, Liu H, He S Y, Hao X P, Wei L 2006 Acta Phys. Sin. 55 5525 (in Chinese) [魏强, 刘海, 何世禹, 郝小鹏, 魏龙 2006 55 5525]

    [55]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115

    [56]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326

    [57]

    Zhu H P, Wang Z G, Gao X, Cui M H, Li B S, Sun J R, Yao C F, Wei K F, Shen T L, Pang L L, Zhu Y B, Li Y F, Wang J, Song P, Zhang P, Cao X Z 2015 Nucl. Instrum. Meth. B 344 5

    [58]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conf. Ser. 443 012017

    [59]

    David C, Panigrahi B K, Amarendra G, Abhaya S, Balaji S, Balamurugan A K, Nair K G M, Viswanathan B, Sundar C S, Raj B 2009 Surf. Coat. Technol. 203 2363

    [60]

    Amarendra G, Panigrahi B K, Abhaya S, David C, Rajaraman R, Nair K G M, Sundar C S, Raj B 2008 Appl. Surf. Sci. 255 139

    [61]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]

    [62]

    Veternikova J S, Slugen V, Sojak S, Skarba M, Korhonen E, Stancek S, Degmova J, Sabelova V, Bartosova L 2014 J. Nucl. Mater. 450 99

    [63]

    Lu E Y, Cao X Z, Jin S X, Zhang P, Zhang C X, Yang J, Wu Y R, Guo L P, Wang B Y 2015 J. Nucl. Mater. 458 240

    [64]

    Li Y F, Shen T L, Gao X, Gao N, Yao C F, Sun J R, Wei K F, Li B S, Zhang P, Cao X Z, Zhu Y B, Pang L L, Cui M H, Chang H L, Wang J, Zhu H P, Wang D, Song P, Sheng Y B, Zhang H P, Hu B T, Wang Z G 2014 Chin. Phys. Lett. 31 036101

    [65]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum. Meth. B 267 3162

    [66]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120

    [67]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y X, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101

    [68]

    Mostafa M K, Baerdemaeker J D, Caenegem N V, Segers D, Houbaert Y 2008 Appl. Surf. Sci. 255 145

    [69]

    Holzwarth U, Barbieri A, Hansen-Ilzhöfer S, Schaaff P, Haaks M 2001 Appl. Phys. A: Mater. 73 467

    [70]

    Dryzek E, Sarnek M, Wróbel M 2014 J. Mater. Sci. 490 8449

    [71]

    Onitsuka T, Takenaka M, Kuramoto E, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204

    [72]

    He S M, Brandhoff P N, Schut H, van der Zwang S, van Dijk N H 2013 J. Mater. Sci. 48 6150

    [73]

    He S M, Dijk N H, Schut H, Peekstok E R, Zwaag S 2010 Phys. Rev. B 81 094103

    [74]

    Zhu Z J, Yao M Y, Xue X D, Wu Y C, Zhou B X 2014 J. Phys.: Conf. Ser. 505 012008

    [75]

    Wu X, Asoka-Kumar P, Lynn K G, Hebert K R 1994 J. Electrochem. Soc. 141 3361

    [76]

    Wu Y C, Li P H, Xue X D, Wang S J, Kallis A, Coleman P G, Zhai T 2011 J. Phys.: Conf. Ser. 262 012065

    [77]

    Wu Y C, Zhai T, Coleman P G 2012 Symposium on Fatigue and Corrosion Damage in Metallic Materials San Diego, CA, Feb. 27-Mar. 3, 2011 p2823

    [78]

    Liu Y F, Yang W, Qin Q L, Wu Y C, Wen W, Zhai T, Yu B, Li D Y, Luo A, Song G L 2014 Corros. Sci. 81 65

    [79]

    Wu Y C, Chen Y Q, Wang B, Wang S J, Jean Y C, Suzuki R, Ohdaira T 2005 10th International Workshop on Slow Positron Beam Techniques for Solids and Surfaces Univ. Qatar, Doha, QATAR, Mar. 19-25, 2005 p3274

    [80]

    Wu Y C, Zhang R, Chen H, Li Y, Zhang J, Zhu D M, Jean Y C 2002 7th International Workshop on Positron and Positronium Chemistry Knoxville, TN, July 7-12, 2002 p599

    [81]

    Khaled M M, Yilbas B S, Al-Qaradawi I Y, Coleman P G, Abdulmalik D, Seddigi Z S, Abulkibash A, Abu-Sharkh B F, Emad M M 2006 Surf. Coat. Technol. 201 932

    [82]

    Pikart P, Hugenschmidt C, Horisberger M, Matsukawa Y, Hatakeyama M, Toyama T, Nagai Y 2011 Phys. Rev. B 84 014106

    [83]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309

    [84]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloy. Compd. 587 515

    [85]

    Raghavan G, Venugopal Rao G, Amarendra G, Tyagi A K, Viswanathan B 2001 Appl. Surf. Sci. 178 75

    [86]

    Uedono A, Kirimura T, Wilson C J, Croes K, Demuynck S, Tokei Z, Oshima N, Suzuki R 2013 J. Appl. Phys. 114 074510

    [87]

    Yang A L, Song H P, Liang D C, Wei H Y, Liu X L, Jin P, Qin X B, Yang S Y, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 96 151904

    [88]

    Anastasopol A, Eijt S W H, Schut H, Mulder F M, Plazaola F, Dam B 2012 7th International Workshop on Positron Studies of Defects (PSD) Delft Univ. Technol, Delft, Netherlands, Aug. 28-Sep. 2, 2011 p16

    [89]

    Uedonoa A, Suzuki T, Nakamura T, Ohdaira T, Suzuki R 2005 J. Appl. Phys. 98 043504

    [90]

    Uedono A, Yamashita Y, Tsutsui T, Dordi Y, Li S, Oshima N, Suzuki R 2012 J. Appl. Phys. 111 104506

    [91]

    Keeblea D J, Krishnan A, Friessnegg T, Nielsen B, Madhukar S, Aggarwal S, Ramesh R, Poindexter E H 1998 Appl. Phys. Lett. 73 508

    [92]

    Zhao C J, Ding L, Zhao Z D, Zhang P, Cao X Z, Wang B Y, Zhang J Y, Yu G H 2013 Appl. Phys. A 116 845

    [93]

    Zhao C J, Lu X A, Zhao Z D, Li M H, Zhang P, Wang B Y, Cao X Z, Zhang J Y, Yu G H 2013 J. Appl. Phys. 114 113903

    [94]

    Zhao C J, Liu Y, Zhang J Y, Sun L, Ding L, Zhang P, Wang B Y, Cao X Z, Yu G H 2012 Appl. Phys. Lett. 101 072404

    [95]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522

    [96]

    Sharma S K, Sudarshan K, Pujari P K 2014 RSC Adv. 4 14733

  • [1] Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong. Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials. Acta Physica Sinica, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [3] Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [4] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [5] Zhang Li-Juan, Zhang Chuan-Chao, Liao Wei, Liu Jian-Dang, Gu Bing-Chuan, Yuan Xiao-Dong, Ye Bang-Jiao. Influence of deuteration on the KH2PO4 crystal micro-defects characterization by using positron annihilation spectroscopy. Acta Physica Sinica, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [6] Ji Le, Yang Sheng-Zhi, Cai Jie, Li Yan, Wang Xiao-Tong, Zhang Zai-Qiang, Hou Xiu-Li, Guan Qing-Feng. Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam. Acta Physica Sinica, 2013, 62(23): 236103. doi: 10.7498/aps.62.236103
    [7] Cai Jie, Ji Le, Yang Sheng-Zhi, Zhang Zai-Qiang, Liu Shi-Chao, Li Yan, Wang Xiao-Tong, Guan Qing-Feng. Surface microstructure and stress characteristics in pure zirconium after high current pulsed electron beam irradiation. Acta Physica Sinica, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [8] Li Yan, Cai Jie, Lü Peng, Zou Yang, Wan Ming-Zhen, Peng Dong-Jin, Gu Qian-Qian, Guan Qing-Feng. Surface microstructure and stress characteristics in pure titanium after high-current pulsed electron beam irradiation. Acta Physica Sinica, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [9] Guan Qing-Feng, Gu Qian-Qian, Li Yan, Qiu Dong-Hua, Peng Dong-Jin, Wang Xue-Tao. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beamdeformation structures. Acta Physica Sinica, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [10] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [11] Wang Xue-Tao, Guan Qing-Feng, Qiu Dong-Hua, Cheng Xiu-Wei, Li Yan, Peng Dong-Jin, Gu Qian-Qian. Defect microstructures in polycrystalline pure copper induced by high-current pulsed electron beam——the vacancy defect clusters and surface micropores. Acta Physica Sinica, 2010, 59(10): 7252-7257. doi: 10.7498/aps.59.7252
    [12] Du Xiao-Ming, Wu Er-Dong, Dong Bao-Zhong, Wu Zhong-Hua, Yuan Xue-Zhong. Microscopic defects in Ti-Mo alloy hydrides studied by small-angle X-ray scattering. Acta Physica Sinica, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [13] Hao Xiao-Peng, Wang Bao-Yi, Yu Run-Sheng, Wei Long. Zirconium-ion implantation of zircaloy-4 investiged by slow positron beam. Acta Physica Sinica, 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [14] Chen Deng-Ping, He Hong-Liang, Li Ming-Fa, Jing Fu-Qian. A delayed failure of inhomogenous brittle material under shock wave compression. Acta Physica Sinica, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [15] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [16] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [17] HE YUAN-JIN, HU YONG, DAI LUN. AN IN-LINE ANALYSIS SYSTEM OF SLOW POSITRON BEAM FOR MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 1992, 41(3): 517-522. doi: 10.7498/aps.41.517
    [18] WANG ZHI-CHAO, TENG MIN-KANG, LIU YIN-CHUN. ATUDY OF INTERFACE PROPERTIES OF a-Si:H/a-SiNx:H MULTILAYERS BY PAT. Acta Physica Sinica, 1991, 40(12): 1973-1979. doi: 10.7498/aps.40.1973
    [19] HAN RONG-DIAN, GUO XUE-ZHE, WENG HUI-MIN, XIE LI, ZHANG SHAO-QIANG. EXPERIMENTS OF PRODUCING SLOW POSITRON BEAM. Acta Physica Sinica, 1988, 37(9): 1517-1521. doi: 10.7498/aps.37.1517
    [20] HE YONG-SHU, HUANG MAO-RONG, WAN XIN-ZHU, MA RU-ZHANG, YU EN-HUA. POSITRON ANNIHILATION STUDY OF DEFECTS IN MARTENSITIC TRANSFORMATION OF Fe-Ni ALLOYS. Acta Physica Sinica, 1986, 35(11): 1528-1531. doi: 10.7498/aps.35.1528
Metrics
  • Abstract views:  7362
  • PDF Downloads:  535
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2015
  • Accepted Date:  29 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map