搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究

张丽娟 张传超 廖威 刘建党 谷冰川 袁晓东 叶邦角

引用本文:
Citation:

氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究

张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角

Influence of deuteration on the KH2PO4 crystal micro-defects characterization by using positron annihilation spectroscopy

Zhang Li-Juan, Zhang Chuan-Chao, Liao Wei, Liu Jian-Dang, Gu Bing-Chuan, Yuan Xiao-Dong, Ye Bang-Jiao
PDF
导出引用
  • 采用传统降温法从不同程度氘化(x=0, 0.51, 0.85)的生长溶液中生长氘化KH2PO4(KDP) 晶体, 利用正电子湮没技术(正电子寿命谱和多普勒展宽谱)、结合X射线衍射谱(XRD) 结构分析, 对KDP晶体氘化生长的微观缺陷进行了研究, 讨论了氘化程度对晶体内部微观结构特性、缺陷类型和浓度的影响. XRD结果显示晶胞参数a, b值随氘含量的增加而增加, c值无明显变化; 正电子寿命谱结果发现随着氘化浓度的提高, KDP晶体内部中性填隙缺陷以及氧缺陷不断增加, 引起晶体晶格畸变; 氢空位、K空位、杂质替位缺陷不断发生缔合反应形成复合缺陷, 缺陷浓度不断减少; 团簇、微空洞等大尺寸缺陷也在不断发生聚合反应, 缺陷浓度表现为不断减少. 多普勒实验结果表明随着氘化程度的提升, 晶体内部各类缺陷表现为同步变化. 实验结果表明, KDP晶体在低浓度氘化生长(50%以内)下缺陷反应较弱, 而在高浓度氘化(50%以上)下的缺陷反应显著增强.
    Deuterated potassium dihydrogen phosphate (K(DxH1-x) 2PO4) crystals with different deuteration levels (x=0, 0.51, 0.85) were grown by conventional cooling method from deuterated solutions at Shandong University. Positron annihilation spectroscopy has been widely used to the study on micro-defects of semiconductors and other materials, which is very sensitive to the crystal structure, defect types, defect concentrations, and so on. In this paper, positron annihilation spectroscopies (positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy), combined with X-ray diffraction (XRD) are used to investigate micro-defects characterization in K(DxH1-x) 2PO4 crystals. Influences of deuteration degree on the crystal structure characteristics, defect types and concentrations are discussed. It can be concluded from XRD experiments that the lattice parameters of a and b increase with the increase in deuteration levels, while no obvious change occurs on the lattice parameter c. KH2PO4(KDP) crystals at low deuteration level and high deuteration level could be regarded as low deuterium-doped KDP crystal and low hydrogen-doped DKDP crystal respectively. It is indicated that the higher the replacement ratio in the crystals, the weaker the diffraction peak they show. Positron annihilation lifetimes increase clearly in the highly-deuterated KDP crystals. It is found that neutral interstitial defects and oxygen defects in the KDP crystal increase with increasing deuteration degree. And these types of defects can be attributed to lattice distortion effect. From positron annihilation lifetime results we can arrive at another conclusion that the compound defects will form and defects concentration is declined, when hydrogen vacancies, K vacancies and substitutional impurity defects continue to react by means of association reactions. These phenomena suggest that high deuteration plays a significant role in promoting association reaction of internal defects in the crystals. Furthermore, the polymerization reaction of the clusters and micro-cavities continue to occur, therefore defect concentrations will show a constant decrease. Doppler broadening spectra show that the internal defects in the crystals increase integrally with an increase of deuteration level; this agrees well with the results of positron annihilation lifetime. Moreover, Doppler broadening spectra indicate that the proportional change of these defects is synchronous and consistent with the actuality. To sum up, our experimental results suggest that the defect reaction is weak in low degree of KDP crystal deuteration growth (less than 50%), while reaction is enhanced in the high degree of deuteration growth (higher than 50%).
    • 基金项目: 国家自然科学基金(批准号: 11175171)和国家自然科学基金青年科学基金(批准号: 11404301) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175171), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404301).
    [1]

    Zhang K C, Wang X M 1996 Nonlinear Optical Crystal Materials Science (Beijing: Science Press) p93 (in Chinese) [张可从, 王希敏 1996 非线性光学晶体材料科学 (北京:科学出版社) 第93页]

    [2]

    Guo D C, Jiang X D, Huang J, Xiang X, Wang F R, Liu H J, Zhou X D, Zu X T 2013 Acta Phys. Sin. 62 147803 (in Chinese) [郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛 2013 62 147803]

    [3]

    Jiang M H 1993 Progress In Phsics 13 14 (in Chinese) [蒋民华 1993 物理学进展 13 14]

    [4]

    Zaitseva N, Carman L 2001 Rrog Cryst Growth Charact Mate 43 1

    [5]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int Mater Rev 47 113

    [6]

    Liu C S, Kioussis N 2003 Phys. Rev. Lett. 91 505

    [7]

    Matos O M, Torchia G A, Bilmes G M, Tocho J O 2004 Phys. Rev. B 69 224102

    [8]

    Demos S G, Staggs M, Radousky H B 2003 Phys. Rev. B 67 224102

    [9]

    Duchateau G, Geoffroy G, Dyan A, Piombini H, Guizard S 2011 Phys. Rev. B 83 075114

    [10]

    Chirila M M, Garces N Y, Halliburton L E, Demos S G, Land T A, Radousky H B 2003 Journal Of Applied Physics 94 6456

    [11]

    Wang K P, Hang Y 2011 Chin. Phys. B 20 077401

    [12]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p137 (in Chinese) [王少阶, 陈志权, 王波, 吴弈初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第137页]

    [13]

    Wu Y C, Zhang X H 2000 Physics 29 401 (in Chinese) [吴奕初, 张晓红 2000 物理 29 401]

    [14]

    Li C H, Ju X, Jiang X D, Huang J, Zhou X D, Zheng Z, Wu W D, Zheng W G, Li Z X, Wang B Y, Yu X H 2011 Optics Express 19 6439

    [15]

    Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010 Acta Phys. Sin. 59 2789 (in Chinese) [郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角 2010 59 2789]

    [16]

    Zhang L J, Wang T, Wang L H, Liu J D, Zhao M L, Ye B J 2012 Scripta Materialia 67 61

    [17]

    Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012 Acta Phys Sin. 61 237805 (in Chinese) [张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角 2012 61 237805]

    [18]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 Journal of Applied Crystallograph 45 439

    [19]

    Liu B A 2013 Ph. Dissertation D (Jinan: Shandong University) (in Chinese) [刘宝安 2013 博士学位论文 (济南: 山东大学)]

    [20]

    Kansy J 1996 Nucl. Instr. and Meth. Phys. Res. A 374 235

  • [1]

    Zhang K C, Wang X M 1996 Nonlinear Optical Crystal Materials Science (Beijing: Science Press) p93 (in Chinese) [张可从, 王希敏 1996 非线性光学晶体材料科学 (北京:科学出版社) 第93页]

    [2]

    Guo D C, Jiang X D, Huang J, Xiang X, Wang F R, Liu H J, Zhou X D, Zu X T 2013 Acta Phys. Sin. 62 147803 (in Chinese) [郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛 2013 62 147803]

    [3]

    Jiang M H 1993 Progress In Phsics 13 14 (in Chinese) [蒋民华 1993 物理学进展 13 14]

    [4]

    Zaitseva N, Carman L 2001 Rrog Cryst Growth Charact Mate 43 1

    [5]

    De Yoreo J J, Burnham A K, Whitman P K 2002 Int Mater Rev 47 113

    [6]

    Liu C S, Kioussis N 2003 Phys. Rev. Lett. 91 505

    [7]

    Matos O M, Torchia G A, Bilmes G M, Tocho J O 2004 Phys. Rev. B 69 224102

    [8]

    Demos S G, Staggs M, Radousky H B 2003 Phys. Rev. B 67 224102

    [9]

    Duchateau G, Geoffroy G, Dyan A, Piombini H, Guizard S 2011 Phys. Rev. B 83 075114

    [10]

    Chirila M M, Garces N Y, Halliburton L E, Demos S G, Land T A, Radousky H B 2003 Journal Of Applied Physics 94 6456

    [11]

    Wang K P, Hang Y 2011 Chin. Phys. B 20 077401

    [12]

    Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Applied Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p137 (in Chinese) [王少阶, 陈志权, 王波, 吴弈初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第137页]

    [13]

    Wu Y C, Zhang X H 2000 Physics 29 401 (in Chinese) [吴奕初, 张晓红 2000 物理 29 401]

    [14]

    Li C H, Ju X, Jiang X D, Huang J, Zhou X D, Zheng Z, Wu W D, Zheng W G, Li Z X, Wang B Y, Yu X H 2011 Optics Express 19 6439

    [15]

    Hao Y P, Chen X L, Cheng B, Kong W, Xu H X, Du H J, Ye B J 2010 Acta Phys. Sin. 59 2789 (in Chinese) [郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角 2010 59 2789]

    [16]

    Zhang L J, Wang T, Wang L H, Liu J D, Zhao M L, Ye B J 2012 Scripta Materialia 67 61

    [17]

    Zhang L J, Wang L H, Liu J D, Li Q, Cheng B, Zhang J, An R, Zhao M L, Ye B J 2012 Acta Phys Sin. 61 237805 (in Chinese) [张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角 2012 61 237805]

    [18]

    Liu B A, Yin X, Sun X, Xu M X, Ji S H, Xu X G, Zhang J F 2012 Journal of Applied Crystallograph 45 439

    [19]

    Liu B A 2013 Ph. Dissertation D (Jinan: Shandong University) (in Chinese) [刘宝安 2013 博士学位论文 (济南: 山东大学)]

    [20]

    Kansy J 1996 Nucl. Instr. and Meth. Phys. Res. A 374 235

  • [1] 叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠. 正电子湮没符合多普勒展宽技术的材料学研究进展.  , 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [2] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响.  , 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理.  , 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [5] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化.  , 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [6] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用.  , 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [7] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究.  , 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [8] 胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义. 慢正电子束流技术在金属/合金微观缺陷研究中的应用.  , 2015, 64(24): 247804. doi: 10.7498/aps.64.247804
    [9] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响.  , 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [10] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究.  , 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [11] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷.  , 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [12] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究.  , 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [13] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究.  , 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [14] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究.  , 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [15] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究.  , 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [16] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究.  , 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [17] 李平林, 张金仓, 曹桂新, 邓冬梅, 刘丽华, 董成, 敬超, 曹世勋. 磁性离子Fe和Ni替代YBCO体系的结构特征和载流子局域化.  , 2004, 53(4): 1223-1231. doi: 10.7498/aps.53.1223
    [18] 陈镇平, 张金仓, 曹桂新, 曹世勋. La系收缩效应对RBa2Cu3Q7-δ体系局域电子结构和超导电性的影响.  , 2002, 51(9): 2150-2154. doi: 10.7498/aps.51.2150
    [19] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究.  , 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
    [20] 王天民, 下斗米道夫, 堂山昌男. 用正电子湮没研究NiAl中的晶体缺陷.  , 1986, 35(6): 704-708. doi: 10.7498/aps.35.704
计量
  • 文章访问数:  6846
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-12
  • 修回日期:  2014-12-21
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map