-
Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.
-
Keywords:
- perovskite solar cell /
- interface /
- stability /
- buffer layer
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506
Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391
Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234
Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189
Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155
Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854
Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963
Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646
Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100
Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61
Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937
Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153
Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36
Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280
Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19
Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81
Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302
Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428
Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173
Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695
Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82
Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711
Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176
Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306
Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700
Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395
Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31
Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882
Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439
Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587
Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736
Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507
Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885
Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532
Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399
Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674
Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934
Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683
Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903
Google Scholar
-
图 6 Perovskite/PCBM和Perovskite/PCBM/Zr(Ac)4薄膜的AFM图及其表面I、N、Pb元素含量的XPS图谱; 有无Zr(Ac)4缓冲层钙钛矿太阳电池的最优电池J-V图[30] (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS图谱; (d) J-V图
Figure 6. AFM diagram of Perovskite/PCBM and Perovskite/PCBM/Zr(Ac)4 films and XPS spectra showing the different amount of I, N and Pb elements on the films surface; the J-V characteristics of the optimized device perovskite solar cell with and without Zr(Ac)4 buffer layer[30]: (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS spectra; (d) J-V diagram.
图 7 ITO/SnO2/perovskite与ITO/PEI/SnO2/perovskite的AFM图、PL图及有无PEI缓冲层最优电池的入射光子-电流转换效率图(IPCE)[20] (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL图; (d) IPCE图
Figure 7. The AFM images and the steady state PL spectra of ITO/PEI/SnO2/perovskite and ITO/SnO2/perovskite, and the IPCE spectra of the champion devices with and without PEI buffer layer[20]: (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL spectra; (d) IPCE spectra.
-
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623
Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506
Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391
Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234
Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189
Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155
Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854
Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963
Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646
Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100
Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61
Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937
Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153
Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36
Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280
Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19
Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81
Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302
Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428
Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173
Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695
Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82
Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711
Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176
Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306
Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700
Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395
Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31
Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882
Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439
Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587
Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736
Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507
Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885
Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532
Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399
Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674
Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934
Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683
Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903
Google Scholar
Catalog
Metrics
- Abstract views: 23539
- PDF Downloads: 1042
- Cited By: 0