Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and computational methods of protein liquid-liquid phase separation

Zhang Peng-Cheng Fang Wen-Yu Bao Lei Kang Wen-Bin

Citation:

Theoretical and computational methods of protein liquid-liquid phase separation

Zhang Peng-Cheng, Fang Wen-Yu, Bao Lei, Kang Wen-Bin
PDF
HTML
Get Citation
  • Liquid-liquid phase separation (LLPS) of proteins is an emerging field in the research of biophysics. Many intrinsically disordered proteins (IDPs) are known to have the ability to assemble via LLPS and to organize into protein-rich and dilute phases both in vivo and in vitro. Such a kind of phase separation of proteins plays an important role in a wide range of cellular processes, such as the formation of membraneless organelles (MLOs), signaling transduction, intracellular organization, chromatin organization, etc. In recent years, there appeared a great number of theoretical analysis, computational simulation and experimental research focusing on the physical principles of LLPS. In this article, the theoretical and computational simulation methods for the LLPS are briefly reviewed. To elucidate the physical principle of LLPS and to understand the phase behaviors of the proteins, biophysicists have introduced the concepts and theories from statistical mechanics and polymer sciences. Flory-Huggins theory and its extensions, such as mean-field model, random phase approximation (RPA) and field theory simulations, can conduce to understanding the phase diagram of the LLPS. To reveal the hidden principles in the sequence-dependent phase behaviors of different biomolecular condensates, different simulation methods including lattice models, off-lattice coarse-grained models, and all-atom simulations are introduced to perform computer simulations. By reducing the conformational space of the proteins, lattice models can capture the key points in LLPS and simplify the computations. In the off-lattice models, a polypeptide can be coarse-grained as connected particles representing repeated short peptide fragments. All-atom simulations can describe the structure of proteins at a higher resolution but consume higher computation-power. Multi-scale simulation may provide the key to understanding LLPS at both high computational efficiency and high accuracy. With these methods, we can elucidate the sequence-dependent phase behaviors of proteins at different resolutions. To sum up, it is necessary to choose the appropriate method to model LLPS processes according to the interactions within the molecules and the specific phase behaviors of the system. The simulations of LLPS can facilitate the comprehensive understanding of the key features which regulate the membraneless compartmentalization in cell biology and shed light on the design of artificial cells and the control of neurodegeneration.
      Corresponding author: Kang Wen-Bin, wbkang@hbmu.edu.cn
    [1]

    McCarty J, Delaney K T, Danielsen S P, Fredrickson G H, Shea J E 2019 J. Phys. Chem. Lett. 10 1644Google Scholar

    [2]

    Lin Y H, Song J H, Forman-Kay J D, Chan H S 2017 J. Mol. Liq. 228 176Google Scholar

    [3]

    Lin Y H, Song J H, Forman-Kay J D, Chan H S 2019 J. Mol. Liq. 273 676Google Scholar

    [4]

    Dignon G L, Zheng W W, Kim Y C, Mittal J, Best R B 2018 Biophys. J. 114 431aGoogle Scholar

    [5]

    Dignon G L, Zheng W W, Best R B, Mittal J 2017 Biophys. J. 112 200a

    [6]

    Choi J M, Mitrea D M, Stanley C B, Ruff K M, Holehouse A S, Kriwacki R W, Pappu R V 2019 Biophys. J. 116 349aGoogle Scholar

    [7]

    Chin A F, Hilser V J, Zheng Y X 2019 Biophys. J. 116 179aGoogle Scholar

    [8]

    周丰茂, 孙东科, 朱鸣芳 2010 59 3394Google Scholar

    Zhou F M, Sun D K, Zhu M F 2010 Acta Phys. Sin. 59 3394Google Scholar

    [9]

    张长胜, 来鲁华 2010 物理化学学报 36 1907053Google Scholar

    Zhang C S, Lai L H 2010 Acta Phys. Chim. Sin. 36 1907053Google Scholar

    [10]

    Burke K A, Janke A M, Rhine C L, Fawzi N L 2015 Mol. Cell 60 231Google Scholar

    [11]

    Brangwynne C P, Tompa P, Pappu R V 2015 Nat. Phys. 11 899Google Scholar

    [12]

    Uversky V N 2017 Curr. Opin. Struct. Biol. 44 18Google Scholar

    [13]

    Feric M, Vaidya N, Harmon T S, Mitrea D M, Zhu L, Richardson T M, Kriwacki R W, Pappu R V, Brangwynne C P 2016 Cell 165 1686Google Scholar

    [14]

    Falahati H, Wieschaus E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 1335Google Scholar

    [15]

    Sabari B R, Dall'Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse, I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958Google Scholar

    [16]

    Das R K, Pappu R V 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13392Google Scholar

    [17]

    Dignon G L, Zheng W W, Best R B, Kim Y C, Mittal J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9929Google Scholar

    [18]

    Harmon T S, Holehouse A S, Rosen M K, Pappu R V 2017 ELIFE 6 e30294Google Scholar

    [19]

    Kang W B, He C, Liu Z X, Wang J, Wang W 2019 J. Biomol. Struct. Dyn. 37 1956Google Scholar

    [20]

    Lin Y, Currie S L, Rosen M K 2017 J. Biol. Chem. 292 19110Google Scholar

    [21]

    Lin Y H, Brady J P, Forman-Kay J D, Chan H S 2017 New J. Phys. 19 115003Google Scholar

    [22]

    Schuster B S, Dignon G, Jahnke C, Good M C, Hammer D A, Mittal J 2019 Biophys. J. 116 453aGoogle Scholar

    [23]

    Smith J, Calidas D, Schmidt H, Lu T, Seydoux G 2016 ELIFE 5 e21337Google Scholar

    [24]

    Uebel C J, Anderson D C, Mandarino L M, Manage K I, Aynaszyan S, Phillips C M 2018 Plos Genet. 14 e1007542Google Scholar

    [25]

    康文斌, 王骏, 王炜 2018 67 058701Google Scholar

    Kang W B, Wang J, Wang W 2018 Acta Phys. Sin. 67 058701Google Scholar

    [26]

    Pak C W, Kosno M, Holehouse A S, Padrick S B, Mittal A, A R, Yunus A A, Liu D R, Pappu R V, Rosen M K 2016 Mol. Cell 63 72Google Scholar

    [27]

    Gates Z P, Baxa M C, Yu W, Riback J A, Li H, Roux B, Kent S B, Sosnick T R 2017 Proc. Natl. Acad. Sci. U.S.A. 114 2241Google Scholar

    [28]

    Riback J A, Katanski C D, Kear-Scott J L, Pilipenko E V, Rojek A E, Sosnick T R, Drummond D A 2017 Cell 168 1028Google Scholar

    [29]

    Das R K, Ruff K M, Pappu R V 2015 Curr. Opin. Struct. Biol. 32 102Google Scholar

    [30]

    Vitalis A, Wang X, Pappu R V 2007 Biophys. J. 93 1923Google Scholar

    [31]

    Papoian G A 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14237Google Scholar

    [32]

    Levine Z A, Shea J E 2017 Curr. Opin. Struct. Biol. 43 95Google Scholar

    [33]

    Dignon G L, Zheng W, Kim Y C, Mittal J 2019 ACS Central Sci. 5 821Google Scholar

    [34]

    Murthy A C, Dignon G L, Kan Y, Zerze G H, Parekh S H, Mittal J, Fawzi N L 2019 Nat. Struct. Mol. Biol. 26 637Google Scholar

    [35]

    Ruff K M, Pappu R V, Holehouse A S 2019 Curr. Opin. Struct. Biol. 56 1Google Scholar

    [36]

    Monahan Z, Ryan V H, Janke A M, Burke K A, Rhoads S N, Zerze G H, O'Meally R, Dignon G L, Conicella A E, Zheng W W, Best R B, Cole R N, Mittal J, Shewmaker F, Fawzi N L 2017 EMBO J. 36 2951Google Scholar

    [37]

    Best R B 2017 Curr. Opin. Struct. Biol. 42 147Google Scholar

    [38]

    Robustelli P, Piana S, Shaw D E 2018 Proc. Natl. Acad. Sci. U.S.A. 115 E4758Google Scholar

    [39]

    van L R, Buljan M, Lang B, Weatheritt R J, Daughdrill G W, Dunker A K, Fuxreiter M, Gough J, Gsponer J, Jones D T, Kim P M, Kriwacki R W, Oldfield C J, Pappu R V, Tompa P, Uversky V N, Wright P E, Babu M M 2014 Chem. Rev. 114 6589Google Scholar

    [40]

    Mittag T, Forman-Kay J D 2007 Curr. Opin. Struct. Biol. 17 3Google Scholar

    [41]

    Flory P J 1942 J. Chem. Phys. 10 51Google Scholar

    [42]

    Huggins M L 1942 J. Chem. Phys. 46 151Google Scholar

    [43]

    Samanta H S, Zhuravlev P I, Hinczewski M, Hori N, Chakrabarti S, Thirumalai D 2017 Soft Matter 13 3622Google Scholar

    [44]

    Zhou H X, Nguemaha V, Mazarakos K, Qin S B 2018 Trends Biochem. Sci. 43 499Google Scholar

    [45]

    Lin Y H, Forman-Kay J D, Chan H S 2016 Phys. Rev. Lett. 117 178101Google Scholar

    [46]

    Liu Y X, Zhang H D, Tong C H, Yang Y L 2011 Macromolecules 44 8261Google Scholar

    [47]

    Speck T, Menzel A M, Bialke J, Lowen H 2015 J. Chem. Phys. 142 224109Google Scholar

    [48]

    Burke M G, Woscholski R, Yaliraki S N 2003 Proc. Natl. Acad. Sci. U.S.A. 100 13928Google Scholar

    [49]

    Ruff K M, Khan S J, Pappu R V 2014 Biophys. J. 107 1226Google Scholar

    [50]

    Zuccato C, Valenza M, Cattaneo E 2010 Physiol. Rev. 90 905Google Scholar

    [51]

    Condon J E, Martin T B, Jayaraman A 2017 Soft Matter 13 2907Google Scholar

    [52]

    Dignon G L, Zheng W, Kim Y C, Best R B, Mittal J 2018 PLOS Comput. Biol. 14 e1005941Google Scholar

    [53]

    Das S, Eisen A, Lin Y H, Chan H S 2018 J. Phys. Chem. B 122 5418Google Scholar

    [54]

    Kapcha L H, Rossky P J 2014 J. Mol. Boil. 426 484Google Scholar

    [55]

    Ashbaugh H S, Hatch H W 2008 J. Am. Chem. Soc. 130 9536Google Scholar

    [56]

    Ghavami A, Veenhoff L M, van der Giessen E, Onck P R 2014 Biophys. J. 107 1393Google Scholar

    [57]

    Borgia A, Borgia M B, Bugge K, Kissling V M, Heidarsson P O, Fernandes C B, Sottini A, Soranno A, Buholzer K J, Nettels D, Kragelund B B, Best R B, Schuler B 2018 Nature 555 61Google Scholar

    [58]

    Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A 2018 Cell 174 688Google Scholar

    [59]

    Song J, Gomes G N, Shi T, Gradinaru C C, Chan H S 2017 Biophys. J. 113 1012Google Scholar

    [60]

    Noid W G 2013 J. Chem. Phys. 139 090901Google Scholar

    [61]

    Voegler Smith A, Hall C K 2001 Proteins 44 344Google Scholar

    [62]

    Marchut A J, Hall C K 2006 Biophys. J. 90 4574Google Scholar

    [63]

    Marchut A J, Hall C K 2007 Proteins 66 96Google Scholar

    [64]

    Nguyen H D, Hall C K 2006 J. Am. Chem. Soc. 128 1890Google Scholar

    [65]

    Cheon M, Chang I, Hall C K 2010 Proteins 78 2950Google Scholar

    [66]

    Yeo J J, Huang W W, Tarakanova A, Zhang Y W, Kaplan D L, Buehler M J 2018 J. Mater. Chem. B 6 3727Google Scholar

    [67]

    Bereau T, Deserno M 2009 J. Chem. Phys. 130 235106Google Scholar

    [68]

    Rutter G O, Brown A H, Quigley D, Walsh T R, Allen M P 2015 Phys. Chem. Chem. Phys. 17 31741Google Scholar

    [69]

    Chen M C, Wolynes P G 2017 Proc. Natl. Acad. Sci. U.S.A. 114 4406Google Scholar

    [70]

    Seo M, Rauscher S, Pomes R, Tieleman D P 2012 J. Chem. Theory Comput. 8 1774Google Scholar

    [71]

    Miao L, Schulten K 2009 Structure 17 449Google Scholar

    [72]

    Monticelli L, Kandasamy S K, Periole X, Larson R G, Tieleman D P, Marrink S J 2008 J. Chem. Theory Comput. 4 819Google Scholar

    [73]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, Vries A H 2007 J. Phys. Chem. B 111 7812Google Scholar

    [74]

    Lu L Y, Dama J F, Voth G A 2013 J. Chem. Phys. 139 121906Google Scholar

    [75]

    Hills R D, Lu L, Voth G A 2010 PLOS Comput. Biol. 6 e1000827Google Scholar

    [76]

    Ando D, Zandi R, Kim Y W, Colvin M, Rexach M, Gopinathan A J 2014 Biophys. J. 106 1997Google Scholar

    [77]

    Kim Y C, Hummer G 2008 J. Mol. Biol. 375 1416Google Scholar

    [78]

    Ryan V H, Dignon G L, Zerze G H, Chabata C V, Silva R, Conicella A E, Amaya J, Burke K A, Mittal J, Fawzi N L 2018 Mol. Cell 69 465Google Scholar

    [79]

    Choi J-M, Dar F, Pappu R V 2019 PLOS Comput. Biol. 15 e1007028Google Scholar

    [80]

    Tran H T, Mao A, Pappu R V 2008 J. Am. Chem. Soc. 130 7380Google Scholar

    [81]

    Holehouse A S, Garai K, Lyle N, Vitalis A, Pappu R V 2015 J. Am. Chem. Soc. 137 2984Google Scholar

    [82]

    Asthagiri D, Karandur D, Tomar D S, Pettitt B M 2017 J. Phys. Chem. B 121 8078Google Scholar

    [83]

    Karandur D, Wong K Y, Pettitt B M 2014 J. Phys. Chem. B 118 9565Google Scholar

    [84]

    Vitalis A, Wang X, Pappu R V 2008 J. Mol. Biol. 384 279Google Scholar

    [85]

    Vitalis A, Lyle N, Pappu R V 2009 Biophys. J. 97 303Google Scholar

    [86]

    Kang H, Vazquez F X, Zhang L, Das P, Toledo-Sherman L, Luan B, Levitt M, Zhou R 2017 J. Am. Chem. Soc. 139 8820Google Scholar

    [87]

    Daggett V, Kollman P A, Kuntz I D 1991 Biopolymers 31 1115Google Scholar

  • 图 1  研究蛋白质“液-液相分离”的计算方法: 从左至右分别是解析模型、粗粒化模型(包括多个残基单个粒子、单个残基单个粒子、单个残基多个粒子的模型)和全原子模型, 分辨率的提升对计算资源的耗费程度急剧增高, 而模型假设数的减少会减弱研究涌现行为的能力[35]

    Figure 1.  Computational approaches utilized to study protein liquid-liquid phase separation (LLPS). From left to right are the analytical model, the coarse-grained model (multiple-residues per bead, single-bead per residue and multiple-beads per residue coarse-grained models), and all-atom model. High-resolution descriptions increase the computational cost of the simulations. All-atom model is often impractical for the study of emergent behavior of LLPS[35].

    Baidu
  • [1]

    McCarty J, Delaney K T, Danielsen S P, Fredrickson G H, Shea J E 2019 J. Phys. Chem. Lett. 10 1644Google Scholar

    [2]

    Lin Y H, Song J H, Forman-Kay J D, Chan H S 2017 J. Mol. Liq. 228 176Google Scholar

    [3]

    Lin Y H, Song J H, Forman-Kay J D, Chan H S 2019 J. Mol. Liq. 273 676Google Scholar

    [4]

    Dignon G L, Zheng W W, Kim Y C, Mittal J, Best R B 2018 Biophys. J. 114 431aGoogle Scholar

    [5]

    Dignon G L, Zheng W W, Best R B, Mittal J 2017 Biophys. J. 112 200a

    [6]

    Choi J M, Mitrea D M, Stanley C B, Ruff K M, Holehouse A S, Kriwacki R W, Pappu R V 2019 Biophys. J. 116 349aGoogle Scholar

    [7]

    Chin A F, Hilser V J, Zheng Y X 2019 Biophys. J. 116 179aGoogle Scholar

    [8]

    周丰茂, 孙东科, 朱鸣芳 2010 59 3394Google Scholar

    Zhou F M, Sun D K, Zhu M F 2010 Acta Phys. Sin. 59 3394Google Scholar

    [9]

    张长胜, 来鲁华 2010 物理化学学报 36 1907053Google Scholar

    Zhang C S, Lai L H 2010 Acta Phys. Chim. Sin. 36 1907053Google Scholar

    [10]

    Burke K A, Janke A M, Rhine C L, Fawzi N L 2015 Mol. Cell 60 231Google Scholar

    [11]

    Brangwynne C P, Tompa P, Pappu R V 2015 Nat. Phys. 11 899Google Scholar

    [12]

    Uversky V N 2017 Curr. Opin. Struct. Biol. 44 18Google Scholar

    [13]

    Feric M, Vaidya N, Harmon T S, Mitrea D M, Zhu L, Richardson T M, Kriwacki R W, Pappu R V, Brangwynne C P 2016 Cell 165 1686Google Scholar

    [14]

    Falahati H, Wieschaus E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 1335Google Scholar

    [15]

    Sabari B R, Dall'Agnese A, Boija A, Klein I A, Coffey E L, Shrinivas K, Abraham B J, Hannett N M, Zamudio A V, Manteiga J C, Li C H, Guo Y E, Day D S, Schuijers J, Vasile E, Malik S, Hnisz D, Lee T I, Cisse, I I, Roeder R G, Sharp P A, Chakraborty A K, Young R A 2018 Science 361 eaar3958Google Scholar

    [16]

    Das R K, Pappu R V 2013 Proc. Natl. Acad. Sci. U.S.A. 110 13392Google Scholar

    [17]

    Dignon G L, Zheng W W, Best R B, Kim Y C, Mittal J 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9929Google Scholar

    [18]

    Harmon T S, Holehouse A S, Rosen M K, Pappu R V 2017 ELIFE 6 e30294Google Scholar

    [19]

    Kang W B, He C, Liu Z X, Wang J, Wang W 2019 J. Biomol. Struct. Dyn. 37 1956Google Scholar

    [20]

    Lin Y, Currie S L, Rosen M K 2017 J. Biol. Chem. 292 19110Google Scholar

    [21]

    Lin Y H, Brady J P, Forman-Kay J D, Chan H S 2017 New J. Phys. 19 115003Google Scholar

    [22]

    Schuster B S, Dignon G, Jahnke C, Good M C, Hammer D A, Mittal J 2019 Biophys. J. 116 453aGoogle Scholar

    [23]

    Smith J, Calidas D, Schmidt H, Lu T, Seydoux G 2016 ELIFE 5 e21337Google Scholar

    [24]

    Uebel C J, Anderson D C, Mandarino L M, Manage K I, Aynaszyan S, Phillips C M 2018 Plos Genet. 14 e1007542Google Scholar

    [25]

    康文斌, 王骏, 王炜 2018 67 058701Google Scholar

    Kang W B, Wang J, Wang W 2018 Acta Phys. Sin. 67 058701Google Scholar

    [26]

    Pak C W, Kosno M, Holehouse A S, Padrick S B, Mittal A, A R, Yunus A A, Liu D R, Pappu R V, Rosen M K 2016 Mol. Cell 63 72Google Scholar

    [27]

    Gates Z P, Baxa M C, Yu W, Riback J A, Li H, Roux B, Kent S B, Sosnick T R 2017 Proc. Natl. Acad. Sci. U.S.A. 114 2241Google Scholar

    [28]

    Riback J A, Katanski C D, Kear-Scott J L, Pilipenko E V, Rojek A E, Sosnick T R, Drummond D A 2017 Cell 168 1028Google Scholar

    [29]

    Das R K, Ruff K M, Pappu R V 2015 Curr. Opin. Struct. Biol. 32 102Google Scholar

    [30]

    Vitalis A, Wang X, Pappu R V 2007 Biophys. J. 93 1923Google Scholar

    [31]

    Papoian G A 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14237Google Scholar

    [32]

    Levine Z A, Shea J E 2017 Curr. Opin. Struct. Biol. 43 95Google Scholar

    [33]

    Dignon G L, Zheng W, Kim Y C, Mittal J 2019 ACS Central Sci. 5 821Google Scholar

    [34]

    Murthy A C, Dignon G L, Kan Y, Zerze G H, Parekh S H, Mittal J, Fawzi N L 2019 Nat. Struct. Mol. Biol. 26 637Google Scholar

    [35]

    Ruff K M, Pappu R V, Holehouse A S 2019 Curr. Opin. Struct. Biol. 56 1Google Scholar

    [36]

    Monahan Z, Ryan V H, Janke A M, Burke K A, Rhoads S N, Zerze G H, O'Meally R, Dignon G L, Conicella A E, Zheng W W, Best R B, Cole R N, Mittal J, Shewmaker F, Fawzi N L 2017 EMBO J. 36 2951Google Scholar

    [37]

    Best R B 2017 Curr. Opin. Struct. Biol. 42 147Google Scholar

    [38]

    Robustelli P, Piana S, Shaw D E 2018 Proc. Natl. Acad. Sci. U.S.A. 115 E4758Google Scholar

    [39]

    van L R, Buljan M, Lang B, Weatheritt R J, Daughdrill G W, Dunker A K, Fuxreiter M, Gough J, Gsponer J, Jones D T, Kim P M, Kriwacki R W, Oldfield C J, Pappu R V, Tompa P, Uversky V N, Wright P E, Babu M M 2014 Chem. Rev. 114 6589Google Scholar

    [40]

    Mittag T, Forman-Kay J D 2007 Curr. Opin. Struct. Biol. 17 3Google Scholar

    [41]

    Flory P J 1942 J. Chem. Phys. 10 51Google Scholar

    [42]

    Huggins M L 1942 J. Chem. Phys. 46 151Google Scholar

    [43]

    Samanta H S, Zhuravlev P I, Hinczewski M, Hori N, Chakrabarti S, Thirumalai D 2017 Soft Matter 13 3622Google Scholar

    [44]

    Zhou H X, Nguemaha V, Mazarakos K, Qin S B 2018 Trends Biochem. Sci. 43 499Google Scholar

    [45]

    Lin Y H, Forman-Kay J D, Chan H S 2016 Phys. Rev. Lett. 117 178101Google Scholar

    [46]

    Liu Y X, Zhang H D, Tong C H, Yang Y L 2011 Macromolecules 44 8261Google Scholar

    [47]

    Speck T, Menzel A M, Bialke J, Lowen H 2015 J. Chem. Phys. 142 224109Google Scholar

    [48]

    Burke M G, Woscholski R, Yaliraki S N 2003 Proc. Natl. Acad. Sci. U.S.A. 100 13928Google Scholar

    [49]

    Ruff K M, Khan S J, Pappu R V 2014 Biophys. J. 107 1226Google Scholar

    [50]

    Zuccato C, Valenza M, Cattaneo E 2010 Physiol. Rev. 90 905Google Scholar

    [51]

    Condon J E, Martin T B, Jayaraman A 2017 Soft Matter 13 2907Google Scholar

    [52]

    Dignon G L, Zheng W, Kim Y C, Best R B, Mittal J 2018 PLOS Comput. Biol. 14 e1005941Google Scholar

    [53]

    Das S, Eisen A, Lin Y H, Chan H S 2018 J. Phys. Chem. B 122 5418Google Scholar

    [54]

    Kapcha L H, Rossky P J 2014 J. Mol. Boil. 426 484Google Scholar

    [55]

    Ashbaugh H S, Hatch H W 2008 J. Am. Chem. Soc. 130 9536Google Scholar

    [56]

    Ghavami A, Veenhoff L M, van der Giessen E, Onck P R 2014 Biophys. J. 107 1393Google Scholar

    [57]

    Borgia A, Borgia M B, Bugge K, Kissling V M, Heidarsson P O, Fernandes C B, Sottini A, Soranno A, Buholzer K J, Nettels D, Kragelund B B, Best R B, Schuler B 2018 Nature 555 61Google Scholar

    [58]

    Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A 2018 Cell 174 688Google Scholar

    [59]

    Song J, Gomes G N, Shi T, Gradinaru C C, Chan H S 2017 Biophys. J. 113 1012Google Scholar

    [60]

    Noid W G 2013 J. Chem. Phys. 139 090901Google Scholar

    [61]

    Voegler Smith A, Hall C K 2001 Proteins 44 344Google Scholar

    [62]

    Marchut A J, Hall C K 2006 Biophys. J. 90 4574Google Scholar

    [63]

    Marchut A J, Hall C K 2007 Proteins 66 96Google Scholar

    [64]

    Nguyen H D, Hall C K 2006 J. Am. Chem. Soc. 128 1890Google Scholar

    [65]

    Cheon M, Chang I, Hall C K 2010 Proteins 78 2950Google Scholar

    [66]

    Yeo J J, Huang W W, Tarakanova A, Zhang Y W, Kaplan D L, Buehler M J 2018 J. Mater. Chem. B 6 3727Google Scholar

    [67]

    Bereau T, Deserno M 2009 J. Chem. Phys. 130 235106Google Scholar

    [68]

    Rutter G O, Brown A H, Quigley D, Walsh T R, Allen M P 2015 Phys. Chem. Chem. Phys. 17 31741Google Scholar

    [69]

    Chen M C, Wolynes P G 2017 Proc. Natl. Acad. Sci. U.S.A. 114 4406Google Scholar

    [70]

    Seo M, Rauscher S, Pomes R, Tieleman D P 2012 J. Chem. Theory Comput. 8 1774Google Scholar

    [71]

    Miao L, Schulten K 2009 Structure 17 449Google Scholar

    [72]

    Monticelli L, Kandasamy S K, Periole X, Larson R G, Tieleman D P, Marrink S J 2008 J. Chem. Theory Comput. 4 819Google Scholar

    [73]

    Marrink S J, Risselada H J, Yefimov S, Tieleman D P, Vries A H 2007 J. Phys. Chem. B 111 7812Google Scholar

    [74]

    Lu L Y, Dama J F, Voth G A 2013 J. Chem. Phys. 139 121906Google Scholar

    [75]

    Hills R D, Lu L, Voth G A 2010 PLOS Comput. Biol. 6 e1000827Google Scholar

    [76]

    Ando D, Zandi R, Kim Y W, Colvin M, Rexach M, Gopinathan A J 2014 Biophys. J. 106 1997Google Scholar

    [77]

    Kim Y C, Hummer G 2008 J. Mol. Biol. 375 1416Google Scholar

    [78]

    Ryan V H, Dignon G L, Zerze G H, Chabata C V, Silva R, Conicella A E, Amaya J, Burke K A, Mittal J, Fawzi N L 2018 Mol. Cell 69 465Google Scholar

    [79]

    Choi J-M, Dar F, Pappu R V 2019 PLOS Comput. Biol. 15 e1007028Google Scholar

    [80]

    Tran H T, Mao A, Pappu R V 2008 J. Am. Chem. Soc. 130 7380Google Scholar

    [81]

    Holehouse A S, Garai K, Lyle N, Vitalis A, Pappu R V 2015 J. Am. Chem. Soc. 137 2984Google Scholar

    [82]

    Asthagiri D, Karandur D, Tomar D S, Pettitt B M 2017 J. Phys. Chem. B 121 8078Google Scholar

    [83]

    Karandur D, Wong K Y, Pettitt B M 2014 J. Phys. Chem. B 118 9565Google Scholar

    [84]

    Vitalis A, Wang X, Pappu R V 2008 J. Mol. Biol. 384 279Google Scholar

    [85]

    Vitalis A, Lyle N, Pappu R V 2009 Biophys. J. 97 303Google Scholar

    [86]

    Kang H, Vazquez F X, Zhang L, Das P, Toledo-Sherman L, Luan B, Levitt M, Zhou R 2017 J. Am. Chem. Soc. 139 8820Google Scholar

    [87]

    Daggett V, Kollman P A, Kuntz I D 1991 Biopolymers 31 1115Google Scholar

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [3] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [4] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] Ye Xue-Min, Li Ming-Lan, Zhang Xiang-Shan, Li Chun-Xi. Coupling effects of surface elasticity and disjoining pressure on film drainage process. Acta Physica Sinica, 2018, 67(16): 164701. doi: 10.7498/aps.67.20180349
    [6] Zheng Jian, Zhang Duo, Jiang Bang-Hai, Lu Fang-Yun. Formation mechanism of water jets induced by the interaction between bubble and free surface. Acta Physica Sinica, 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [7] Ye Xue-Min, Yang Shao-Dong, Li Chun-Xi. Synergistic effects of disjoining pressure and surface viscosity on film drainage process. Acta Physica Sinica, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [8] Deng Hai-You, Jia Ya, Zhang Yang. Protein structure prediction. Acta Physica Sinica, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [9] Mao Bin-Bin, Cheng Chen, Chen Fu-Zhou, Luo Hong-Gang. Phase separation induced by density-spin interaction in one-dimensional extended t-J model. Acta Physica Sinica, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [10] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [11] Wan Xi, Zhou Jin, Liu Zeng-Rong. Emergence of features in protein-protein interaction networks. Acta Physica Sinica, 2012, 61(1): 010203. doi: 10.7498/aps.61.010203
    [12] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [13] Shao Yu-Fei, Wang Shao-Qing. Quasicontinuum simulation of crack propagation in nanocrystalline Ni. Acta Physica Sinica, 2010, 59(10): 7258-7265. doi: 10.7498/aps.59.7258
    [14] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [15] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [16] Liu Feng, Liu Shi-Da, Liu Gang, Liu Shi-Kuo. Interaction of two kind scales in Lorenz equation. Acta Physica Sinica, 2007, 56(10): 5629-5634. doi: 10.7498/aps.56.5629
    [17] Tan Xia, Zhang Cheng-Qiang, Xia Yun-Jie. Entanglement and intrinsic decoherence in the interaction between two-mode field and atom. Acta Physica Sinica, 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [18] Yang Tao, He Dong-Hui, Zhang Qing-Lan, Ma Hong-Ru. Effective interaction between charged plane and charged colloidal particle in electrolyte. Acta Physica Sinica, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [19] ZHAO XIAO-PENG, GAO DAN-JUN. SIMULATION TO POISEUILLE FLOW OF ER FLUIDS BY CONSIDERING SHORT-RANGE INTERACTION OF MULTI-PARTICLES. Acta Physica Sinica, 2001, 50(6): 1115-1120. doi: 10.7498/aps.50.1115
    [20] Wang Fan- hou, Yang Chuan-lu, Li Xi-jun, Jing Fu-qian. Studies on Many-Body Interactions and Molecular Dynamics Simulations for the Hugoniot Curves of Liquid Argon. Acta Physica Sinica, 2000, 49(1): 114-118. doi: 10.7498/aps.49.114
Metrics
  • Abstract views:  16862
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2020
  • Accepted Date:  10 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回
Baidu
map