-
利用多尺度建模方法构建了聚酰亚胺/钽铌酸钾纳米颗粒复合物模型, 通过分子动力学模拟研究了不同尺寸钽铌酸钾纳米颗粒(5.5, 8.0, 9.4, 10.5, 11.5 Å)对复合材料的结构、弹性模量和相互作用能的影响规律, 并通过计算纳米颗粒表面原子键能和单位表面积原子数目探究了复合物机械性能提高的内部机理. 聚酰亚胺和聚酰亚胺/钽铌酸钾复合材料的杨氏模量分别为2.91和3.17 GPa, 泊松比分别为0.37和0.35, 钽铌酸钾纳米颗粒的引入可以显著改善聚酰亚胺的机械性能. 纳米颗粒表面原子的键能为8.62-54.37 kJ·mol-1, 表明颗粒与基体主要通过范德华力作用结合且有氢键存在. 计算结果表明, 相同掺杂比例下, 纳米颗粒尺寸越小, 纳米颗粒表面原子数目越大, 颗粒与基体作用更强, 杨氏模量的提高幅度越大, 尺寸效应越显著. 因此, 掺杂小尺寸纳米颗粒是提高聚酰亚胺机械性能的有效途径.The polyimide/potassium tantalite niobate (PI/KTa0.5Nb0.5O3) nanoparticle composite model is established by a multi-scale modeling method. The influences of KTa0.5Nb0.5O3 nanoparticles with different sizes (5.5, 8.0, 9.4, 10.5, 11.5 Å) on the structure, elastic modulus and interaction energy of the polyimidebased nanocomposites are investigated by the molecular dynamics simulation. The cell parameters, cohesive energy density, solubility parameter, Young’s modulus and Poisson’s ratio are calculated. Moreover, the bond energy and the number of atoms per unit surface area of the nanoparticles are analyzed to explore the internal mechanism of mechanical property improvement. The results demonstrate that the density of PI matrix is 1.24-1.35 g/cm3, the cohesive energy density of PI matrix is 2.025×108 J/m3, and the solubility parameter of PI matrix is 1.422×104 (J/m3)1/2, which are consist with the actual PI parameters. Meanwhile, the Young’s moduli of the PI and PI/KTa0.5Nb0.5O3 composites are respectively 2.914 GPa and 3.169 GPa, and the Poisson’s ratios are respectively 0.370 and 0.353, which illustrate that the mechanical properties of the PI could be significantly improved by introducing the KTa0.5Nb0.5O3 nanoparticles. At the same pressure, the increases of Young’s modulus with temperature are basically the same without and with doping the KTa0.5Nb0.5O3 nanoparticles into the PI matrix; and when the temperatures are different, the standard deviations of elastic moduli of the PI matrix and PI/KTa0.5Nb0.5O3 composite are almost the same. No matter what the pressures and the temperature are, the Young’s modulus of PI/KTa0.5Nb0.5O3 composite is always larger than that of PI matrix. These all indicate that the effect of KTa0.5Nb0.5O3 nanoparticle on elastic modulus has a similar variation rule under the selected pressure and temperature conditions. In addition, the bond energies of particle surface atoms are 8.62-54.37 kJ·mol-1, which shows that the binding force between particles and the matrix is mainly van der Waals force, and hydrogen bonds exist at the same time. When the doping concentration is fixed, the proportion of nanoparticles surface atoms increases significantly as the size decreases, the interaction between particles and the matrix becomes stronger, the Young’s modulus increases obviously and the size effect is more significant. Therefore, it is confirmed that the doping small size KTa0.5Nb0.5O3 nanoparticles into the polyimide matrix is an effective way to improve the mechanical properties of the composite.
-
Keywords:
- molecular dynamics simulation /
- polymer nanocomposite /
- polyimide /
- potassium tantalate niobate
[1] Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111
[2] Termonia Y 2010 Polymer 51 4448
[3] Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903
[4] Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518
[5] Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631
[6] Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316
[7] Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104
[8] Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102
[9] Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116
[10] Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768
[11] Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785
[12] Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207
[13] Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996
[14] Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]
[15] Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]
[16] Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202
[17] Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907
[18] Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]
[19] Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]
[20] Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24
[21] Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107
[22] Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509
[23] Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077
[24] Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828
[25] Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369
[26] Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197
[27] Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178
[28] Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124
[29] Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499
[30] Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348
[31] Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54
[32] Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553
[33] Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117
[34] Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]
[35] Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969
[36] Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662
[37] Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073
[38] Yu S, Yang S, Cho M 2009 Polymer 50 945
[39] Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]
[40] Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]
[41] Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]
[42] Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]
-
[1] Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111
[2] Termonia Y 2010 Polymer 51 4448
[3] Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903
[4] Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518
[5] Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631
[6] Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316
[7] Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104
[8] Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102
[9] Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116
[10] Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768
[11] Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785
[12] Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207
[13] Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996
[14] Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]
[15] Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]
[16] Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202
[17] Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907
[18] Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]
[19] Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]
[20] Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24
[21] Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107
[22] Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509
[23] Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077
[24] Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828
[25] Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369
[26] Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197
[27] Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178
[28] Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124
[29] Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499
[30] Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348
[31] Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54
[32] Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553
[33] Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117
[34] Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]
[35] Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969
[36] Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662
[37] Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073
[38] Yu S, Yang S, Cho M 2009 Polymer 50 945
[39] Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]
[40] Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]
[41] Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]
[42] Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]
计量
- 文章访问数: 7660
- PDF下载量: 4485
- 被引次数: 0