搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向全光物理随机数发生器的混沌实时光采样研究

李璞 江镭 孙媛媛 张建国 王云才

引用本文:
Citation:

面向全光物理随机数发生器的混沌实时光采样研究

李璞, 江镭, 孙媛媛, 张建国, 王云才

Study on real-time optical sampling of chaotic laser for all-optical physical random number generator

Li Pu, Jiang Lei, Sun Yuan-Yuan, Zhang Jian-Guo, Wang Yun-Cai
PDF
导出引用
  • 基于混沌激光实现全光物理随机数发生器的物理基础是完成对混沌光信号的高速实时全光采样. 本文利用偏振无关的SOA构建出TOAD全光采样门, 以光反馈半导体激光器产生混沌激光, 对混沌激光的全光采样可行性进行了原理性实验论证, 实现了对光反馈半导体激光器产生的6.4 GHz带宽的混沌激光5 GSa/s的实时、高保真全光采样. 进一步研究显示, 光采样周期与外腔反馈时间成比例与否对混沌信号弱周期性的抑制水平影响显著. 当两者不成比例时, 可有效消除原始混沌信号的弱周期性, 有利于高质量物理随机数的产生.
    Absolutely secure communication should be implemented only through the ‘one-time pad' proposed by Shannon, requires that physical random numbers with rates matched with the associated communication systems be used as secret keys. With the wide application of the WDM technology in optical communication, the single channel rate of the current digital communication system has exceeded 10 Gb/s and developed towards 100 Gb/s. To ensure the absolute security of such a large capacity communication, a large number of real-time, and secure random numbers are needed.#br#Secure random numbers are commonly produced through utilizing physical random phenomena, called physical random number generators. However, conventional physical random number generators are limited by the low bandwidth of the applied entropy sources such as thermal noise, photon-counting and chaotic electrical circuits, and thus have typical low bit rates of the order of Mb/s.#br#In recent years, chaotic lasers attracted wide attention due to their generation of secure, reliable and high-speed random number sequences, and so due to their coherent merits such as high bandwidth, large amplitude fluctuation and ease of integration. There have been lots of schemes based on laser chaos for high-speed random number generation, but most of them execute the random number extractions from the associated laser chaos in the electrical domain and thus their generation rates are faced with the well-known ‘electrical bottleneck'. On the other hand, all-optical random number generation (AO-RNG) methods are all signal processes in the optical domain, so they can efficiently overcome this rate limitation and have a great potential in generating ultrafast random numbers of several dozens or hundreds of Gb/s. However, there is no experimental report on its realization of AO-RNG. One of the obstacles in the way for the AO-RNG achievement is to implement the fast and real-time all-optical sampling of the entropy signals (i.e., laser chaos).#br#In this paper, we present a principal experimental demonstration of the feasibility in the all-optical sampling of the chaotic light signal through constructing a TOAD-based all-optical sampler with a polarization-independent semiconductor optical amplifier (SOA). Specifically, we experimentally generate chaotic laser signals using an optical feedback semiconductor laser and finally complete a 5 GSa/s real-time and high-fidelity all-optical sampling of the chaotic laser with a bandwidth of 6.4 GHz. Further experimental results show that whether the optical sampling period is proportional to the external cavity feedback time or not has a great effect on the weak periodic suppression of the chaotic signal: only when both of them are out of proportion, can the weak periodicity of the original chaotic signal be effectively eliminated; and this is favorable for the generation of high-quality physical random numbers. To the best of our knowledge, it is the first time to realize all-optical sampling of chaotic signal in experiments.
      通信作者: 王云才, wangyc@tyut.edu.cn
    • 基金项目: 国家自然科学基金科学仪器基础研究专款(批准号: 61227016)、国家自然科学基金青年科学基金(批准号: 61205142, 51404165)和山西省自然科学基金(批准号: 2015021088)资助的课题.
      Corresponding author: Wang Yun-Cai, wangyc@tyut.edu.cn
    • Funds: Project supported by the Special Fund For Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61205142, 51404165), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021088).
    [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]

    [3]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]

    [4]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [5]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [6]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [7]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]

    [8]

    Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]

    [9]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [10]

    Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [13]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [14]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [15]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [16]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [18]

    Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886

    [20]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [21]

    Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297

    [22]

    Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [25]

    Jolly A, Granier C 2008 Opt. Commun. 281 3861

  • [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese) [汪龙, 马海强, 李申, 韦克金 2013 62 100303]

    [3]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平 王春华 林愿 骆小文 2014 63 240506]

    [4]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [5]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Li N Q, Zhu H N 2012 IEEE J. Quantum Electron. 48 1069

    [6]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photonics J. 5 1500409

    [7]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 23 (in Chinese) [赵清春, 殷洪玺 2013 激光与光电子学进展 50 23]

    [8]

    Li P, Wang Y C 2014 Laser Optoelectron. Prog. 51 06002 (in Chinese) [李璞, 王云才 2014 激光与光电子学进展 51 06002]

    [9]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 64 084204]

    [10]

    Wang Y C, Tang J H, Zhang M J 2007 CN200710062140.1 (in Chinese) [王云才, 汤君华, 张明江 2007 中国发明专利 CN200710062140.1]

    [11]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photonics 2 728

    [12]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [13]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [14]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [15]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [16]

    Akizawa Y, Yamazaki T, Uchida A, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P2012 IEEE Photonics Technol. Lett. 24 1042

    [17]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijtens X, Bolk J, Van der Sande G 2012 Opt. Express 20 28603

    [18]

    Li X Z, Chan S C 2013 IEEE J. Quantum Electron. 49 829

    [19]

    Li N, Pan W, Xiang S, Zhao Q, Zhang L 2014 IEEE Photonics Technol. Lett. 26 1886

    [20]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [21]

    Li P, Wang Y C, Wang A B, Yang L Z, Zhang M J, Zhang J Z 2012 Opt. Express 20 4297

    [22]

    Oda S, Maruta A, Kitayama K 2004 IEEE Photonics Technol. Lett. 16 587

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Li J, Westlund M, Sunnerud H, Olsson B, Karlsson M, Andrekson P A 2004 IEEE Photon. Technol. Lett. 16 566

    [25]

    Jolly A, Granier C 2008 Opt. Commun. 281 3861

  • [1] 刘远, 袁冀扬, 周心雨, 谷双全, 周沛, 穆鹏华, 李念强. 基于滤波反馈宽带平坦混沌信号的快速物理随机比特产生.  , 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [2] 王亚辉, 赵乐, 胡鑫鑫, 郭阳, 张建忠, 乔丽君, 王涛, 高少华, 张明江. 高精度双斜坡辅助式混沌布里渊光纤动态应变传感.  , 2021, 70(10): 100704. doi: 10.7498/aps.70.20201892
    [3] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测.  , 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [4] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数.  , 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [5] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌.  , 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [6] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量.  , 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数.  , 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [8] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响.  , 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [9] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数.  , 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [10] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究.  , 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [11] 杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响.  , 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [12] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化.  , 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [13] 江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才. 基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究.  , 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [14] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号.  , 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [15] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输.  , 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [16] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响.  , 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [17] 唐曦, 吴加贵, 夏光琼, 吴正茂. 基于互注入半导体激光器的混沌输出产生17.5 Gbit/s随机码.  , 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [18] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究.  , 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [19] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数.  , 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [20] 冯明明, 秦小林, 周春源, 熊 利, 丁良恩. 偏振光量子随机源.  , 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
计量
  • 文章访问数:  6483
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-18
  • 修回日期:  2015-08-13
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map