Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of eye-safe 2 μm laser directly pumped by sunlight

Lin Xue-Tong Yang Su-Hui Wang Xin Li Zhuo Zhang Jin-Ying

Citation:

Theoretical study of eye-safe 2 μm laser directly pumped by sunlight

Lin Xue-Tong, Yang Su-Hui, Wang Xin, Li Zhuo, Zhang Jin-Ying
PDF
HTML
Get Citation
  • Solar energy has become one of the new types of energy sources for humanity in the future due to its abundant recourse, clean use and huge reserve. Solar-pumped laser has potential applications in free space optical communications, remote sensing and other fields. However, the research on solar-pumped laser is limited to 1 μm band with neodymium-doped material as a gain medium. To expand the output wavelength range of solar-pumped solid-state lasers, thereby expanding their application fields is one of the goals pursued by researchers in the field. According to the analysis of the absorption spectra of existing solid laser materials, we find that the thulium-doped crystals also have strong absorption peaks in visible light band where solar radiation is strong. Therefore, it is possible that solar-pumped laser could also generate output at 2 μm eye-safe wavelength. In this paper, the absorption spectrum and spectral matching of two common laser crystals—Tm:YAG and Tm:YAP with solar spectrum are analysed and calculated. According to the quasi-three-level transition rate equation of thulium ion and the model of solar-pumped laser system, we obtain the theoretical threshold pump power densities of these two crystals to be 1.14 kW/cm3 and 1.434 kW/cm3, respectively. We choose the Tm:YAG crystal with lower threshold pump power density as the gain medium and built a two-stage pumping model with TracePro software. In our model, Fresnel lens is the primary solar light concentrator, and a conical cavity with diffusion reflection surface is used as a secondary concentrator to couple the solar energy to laser crystal. Laser setup parameters such as the distance between the Fresnel lens and the window of conic cavity, length of crystal, taper of conic cavity are optimized with the model. The work in this paper offers a valuable reference for future experimental research of 2 μm solar-pumped laser. Finally, we point out the challenge of the future work. Special attention needs to be paid to the huge thermal effect caused by a large amount of sunlight shining on the Tm:YAG crystal. We could find a new kind of diffuse reflection coolants or use thermally bonded crystals to mitigate thermal effects. It will be the focus of future work.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: the National Natural Science Foundation of China (Grant Nos. 61835001, 61875011)
    [1]

    Shi J, Wang H, Qian J, He X 2016 Opt. Commun. 363 21Google Scholar

    [2]

    Zhu X, Lu Z, Wang Y 2015 Laser Part. Beams 33 11Google Scholar

    [3]

    Kavaya M J, Beyon J Y, Koch G J, Petros M, Petzar P, Singh U N, Trieu B C, Yu J 2014 J. Atmos. Ocean. Tech. 31 826Google Scholar

    [4]

    Wagener T J, Demma N, Kemetec J D, Kubo T S 1995 IEEE Aero. El. Sys. Mag. 10 23

    [5]

    Marano M, Galzerano G, Svelto C, Laporta P 2004 IEEE T. Instrum. Meas. 53 571Google Scholar

    [6]

    Koch G J, Beyon J Y, Petzar P, Petros M, Yu J, Trieu B C, Kavaya M J, Singh U N, Modlin E A, Bames B W, Demoz B B 2010 J. Appl. Remote Sens. 4 043512Google Scholar

    [7]

    Koch G J, Beyon J Y, Bames B W, Petros M, Yu J, Amzajerdian F, Kavaya M J, Singh U N 2007 Opt. Eng. 46 16201

    [8]

    Geisthoff U W, Zenk J, Steinhart H, Iro H 2001 HNO 49 194Google Scholar

    [9]

    Ma Q L, Bo Y, Zong N, Pan Y B, Peng Q J, Cui D F, Xu Z Y 2011 Opt. Commun. 284 1645Google Scholar

    [10]

    Young C G 1966 Appl. Opt. 5 993Google Scholar

    [11]

    Thompson G A, Krupkin V, Yogev A 1992 Opt. Eng. 31 2644Google Scholar

    [12]

    Yabe T, Ohkubo T, Uchida S, Yoshida K, Nakatsuka M, Funatsu T, Mabuti A, Oyama A, Nakagawa K, Oishi T, Daito K, Behgol B, Naayama Y, Yoshida M, Motokoshi S, Sato Y, Baasandash C 2007 Appl. Phys. Lett. 90 261120Google Scholar

    [13]

    Saiki T, Funahashi K, Motokoshi S, Imasaki K, Fujioka K, Fujita H, Nakatsuka M, Yamanaka C 2009 Opt. Commun. 282 614Google Scholar

    [14]

    Saiki T, Motokoshi S, Imasaki K, Nakatsuka M, Yamanaka C, Fujioka K, Fujita H 2009 Opt. Commun. 282 936Google Scholar

    [15]

    杨扬 2007 博士毕业论文 (上海: 上海交通大学)

    Yang Y 2007 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [16]

    O'Hare J M, Donlan V L 1976 Pyhs. Rev. B 14 3732Google Scholar

    [17]

    Beyatli E, Sumpf B, Demirbas U 2019 Appl. Opt. 58 2973Google Scholar

    [18]

    赵彬, 赵长明, 何建伟, 杨苏辉 2007 光学学报 27 1797Google Scholar

    Zhao B, Zhao C M, He Z W, Yang S H 2007 Acta Opt. Sin. 27 1797Google Scholar

    [19]

    方容川 2001 固体光谱学 (合肥: 中国科学技术大学出版社) 第4页

    Fang R C 2001 Solid State Spectroscopy (Vol. 1) (Hefei: Press of University of Science and Technology of China) p4 (in Chinese)

    [20]

    赵立伟 2010 硕士毕业论文 (北京: 北京理工大学)

    Zhao L W 2010 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [21]

    徐鹏 2019 博士毕业论文 (北京: 北京理工大学)

    Xu P 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

  • 图 1  太阳光谱曲线

    Figure 1.  Curve of solar spectrum.

    图 2  太阳光谱与Tm:YAP, Tm:YAG吸收谱 (a) Tm:YAG; (b) Tm:YAP

    Figure 2.  Matching curve of crystals and solar spectrum: (a) Tm:YAG; (b) Tm:YAP.

    图 3  Tm3+离子能级跃迁示意图

    Figure 3.  Schematic diagram of Tm3+ ion level transition.

    图 4  (a) TracePro软件建立的太阳光抽运激光器二级抽运模型; (b)锥形腔结构图

    Figure 4.  (a) Two-stage pumping model; (b) structure diagram of conical cavity.

    图 5  锥形腔窗口位置与接受光功率关系图

    Figure 5.  Curve of the relationship between the position of conical cavity and the received solar power.

    图 6  100 mm晶体棒侧面抽运光分布图

    Figure 6.  Distribution map of side pump power on 100 mm-length crystal rod.

    图 7  不同晶体长度下晶体棒轴向光辐照度分布

    Figure 7.  Axial irradiance distribution of different-length crystals.

    图 8  不同锥度下晶体棒轴向光辐照度分布图

    Figure 8.  Axial irradiance distribution of different-taper crystals.

    表 1  晶体光谱匹配分析结果

    Table 1.  Spectral matching analysis results of crystals.

    Active
    medium
    Doping density/cm3Absorption
    band/nm
    Irradiance in absorption
    band/W·m–2
    Percentage of solar
    radiance/%
    Tm:YAG1.261×1020 (1 at.%)360—41021.9104122.9
    456—48038.78578
    656—72084.80076
    747—81269.35269
    Tm:YAP1.965×1020 (1 at.%)360—39419.5293829.8
    450—49468.23487
    643—726108.88686
    744—83695.81626
    DownLoad: CSV

    表 2  晶体参数

    Table 2.  Crystal parameters.

    Tm:YAGTm:YAP
    Doping density/cm31.26×1020
    (1 at.%)
    1.965×1020
    (1 at.%)
    Upper level lifetime/ms10.54.4
    Boltzmann factor
    in upper level
    0.460.29
    Boltzmann factor
    in lower level
    0.0170.015
    Emission cross section/cm22.5×10–213.81×10–21
    Quantum efficiency1.81.9
    Calculation results of
    absorption coefficient
    curve: $\sum\nolimits_i { {\eta _i}\overline { {a_i} } {\lambda _i} } $/cm
    46.0069×10–751.5739×10–7
    Refractive index1.821.91
    DownLoad: CSV
    Baidu
  • [1]

    Shi J, Wang H, Qian J, He X 2016 Opt. Commun. 363 21Google Scholar

    [2]

    Zhu X, Lu Z, Wang Y 2015 Laser Part. Beams 33 11Google Scholar

    [3]

    Kavaya M J, Beyon J Y, Koch G J, Petros M, Petzar P, Singh U N, Trieu B C, Yu J 2014 J. Atmos. Ocean. Tech. 31 826Google Scholar

    [4]

    Wagener T J, Demma N, Kemetec J D, Kubo T S 1995 IEEE Aero. El. Sys. Mag. 10 23

    [5]

    Marano M, Galzerano G, Svelto C, Laporta P 2004 IEEE T. Instrum. Meas. 53 571Google Scholar

    [6]

    Koch G J, Beyon J Y, Petzar P, Petros M, Yu J, Trieu B C, Kavaya M J, Singh U N, Modlin E A, Bames B W, Demoz B B 2010 J. Appl. Remote Sens. 4 043512Google Scholar

    [7]

    Koch G J, Beyon J Y, Bames B W, Petros M, Yu J, Amzajerdian F, Kavaya M J, Singh U N 2007 Opt. Eng. 46 16201

    [8]

    Geisthoff U W, Zenk J, Steinhart H, Iro H 2001 HNO 49 194Google Scholar

    [9]

    Ma Q L, Bo Y, Zong N, Pan Y B, Peng Q J, Cui D F, Xu Z Y 2011 Opt. Commun. 284 1645Google Scholar

    [10]

    Young C G 1966 Appl. Opt. 5 993Google Scholar

    [11]

    Thompson G A, Krupkin V, Yogev A 1992 Opt. Eng. 31 2644Google Scholar

    [12]

    Yabe T, Ohkubo T, Uchida S, Yoshida K, Nakatsuka M, Funatsu T, Mabuti A, Oyama A, Nakagawa K, Oishi T, Daito K, Behgol B, Naayama Y, Yoshida M, Motokoshi S, Sato Y, Baasandash C 2007 Appl. Phys. Lett. 90 261120Google Scholar

    [13]

    Saiki T, Funahashi K, Motokoshi S, Imasaki K, Fujioka K, Fujita H, Nakatsuka M, Yamanaka C 2009 Opt. Commun. 282 614Google Scholar

    [14]

    Saiki T, Motokoshi S, Imasaki K, Nakatsuka M, Yamanaka C, Fujioka K, Fujita H 2009 Opt. Commun. 282 936Google Scholar

    [15]

    杨扬 2007 博士毕业论文 (上海: 上海交通大学)

    Yang Y 2007 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [16]

    O'Hare J M, Donlan V L 1976 Pyhs. Rev. B 14 3732Google Scholar

    [17]

    Beyatli E, Sumpf B, Demirbas U 2019 Appl. Opt. 58 2973Google Scholar

    [18]

    赵彬, 赵长明, 何建伟, 杨苏辉 2007 光学学报 27 1797Google Scholar

    Zhao B, Zhao C M, He Z W, Yang S H 2007 Acta Opt. Sin. 27 1797Google Scholar

    [19]

    方容川 2001 固体光谱学 (合肥: 中国科学技术大学出版社) 第4页

    Fang R C 2001 Solid State Spectroscopy (Vol. 1) (Hefei: Press of University of Science and Technology of China) p4 (in Chinese)

    [20]

    赵立伟 2010 硕士毕业论文 (北京: 北京理工大学)

    Zhao L W 2010 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [21]

    徐鹏 2019 博士毕业论文 (北京: 北京理工大学)

    Xu P 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

  • [1] Wang Chao, Wei Hui, Wang Jiang-Feng, Jiang You-En, Fan Wei, Li Xue-Chun. Laser diode pumped Nd:YAG laser with high repetition and high average power. Acta Physica Sinica, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [2] Zhan Min-Jie, Zou Yu-Wan, Lin Qing-Feng, Wang Zhao-Hua, Han Hai-Nian, Lü Liang, Wei Zhi-Yi, Zhang Jian, Tang Ding-Yuan. Ti:sapphire pumped passively mode-locked Tm:YAG ceramic laser. Acta Physica Sinica, 2014, 63(1): 014205. doi: 10.7498/aps.63.014205
    [3] Liu Huan, Wang Wei, Gong Ma-Li. Corner-pumped Nd:YAG/YAG composite slab continuous-wave 946 nm laser. Acta Physica Sinica, 2013, 62(14): 144205. doi: 10.7498/aps.62.144205
    [4] Li Zhe, Jiang Hai-He, Wang Li, Yang Jing-Wei, Wu Xian-You. Numerical simulation and experimental study of thermal-induced-depolarization in 2 m Cr,Tm,Ho:YAG laser. Acta Physica Sinica, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [5] Zhang Yu-Ping, Zhang Hui-Yun, He Zhi-Hong, Wang Peng, Li Xi-Fu, Yao Jian-Quan. A 36 W intracavity-frequency-doubled diode-side-pumped Nd:YAG/KTP continuous wave green laser. Acta Physica Sinica, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [6] Lan Rui-Jun, Liu Hong, Wang Zheng-Ping, Ren Quan, Zhang Huai-Jin, Wang Ji-Yang, Yu Hao-Hai, Lü Yao-Hui, Sang Yuan-Hua, Xu Xin-Guang. LD pumped Nd:YAG ceramic/KTP green laser. Acta Physica Sinica, 2009, 58(11): 7686-7689. doi: 10.7498/aps.58.7686
    [7] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [8] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun, Jiang Bo. Theoretical and experimental investigation of optical bistability in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2009, 58(2): 964-969. doi: 10.7498/aps.58.964
    [9] Lin Zhi-Feng, Zhang Yun-Shan, Gao Chun-Qing, Gao Ming-Wei. Experimental investigation of LD-pumped Cr,Tm,Ho∶YAG single longitudinal mode microchip laser. Acta Physica Sinica, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [10] Li Li, Zhang Xin-Lu, Chen Li-Xue. Study on intrinsic optical bistability in Tm-doped laser crystal pumped at 648nm avalanche wavelength. Acta Physica Sinica, 2008, 57(1): 278-284. doi: 10.7498/aps.57.278
    [11] Liu Huan, Yao Jian-Quan, Zheng Fang-Hua, Lu Yang, Wang Peng. A dual-wavelength diode-end-pumped Nd:YAG laser operating simultaneously at 1319 and 1338nm. Acta Physica Sinica, 2008, 57(1): 230-237. doi: 10.7498/aps.57.230
    [12] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Optical bistability performance of laser-diode end-pumped Tm, Ho: YLF laser. Acta Physica Sinica, 2008, 57(3): 1699-1703. doi: 10.7498/aps.57.1699
    [13] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Cui Jin-Hui, Ju You-Lun. Laser parameter optimization and experimental study of end-pumped continuous wave Tm,Ho∶YLF lasers. Acta Physica Sinica, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [14] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Fractional thermal loading and thermal lensing in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] Zhang Xin-Lu, Wang Yue-Zhu, Shi Hong-Feng. Diode-end-pumped CW Tm,Ho:YLF solid-state laser working at room temperature. Acta Physica Sinica, 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [16] Zhu Hong-Tao, Lou Qi-Hong, Qi Yun-Feng, Ma Hai-Xia, Dong Jing-Xing, Wei Yun-Rong. Experimental and theoretical study of heat generation in Ti:sapphire end-pumped Nd:YAG ceramic lasers. Acta Physica Sinica, 2005, 54(12): 5648-5653. doi: 10.7498/aps.54.5648
    [17] Zhang Xin-Lu, Wang Yue-Zhu, Ju You-Lun. Influence of energy-transfer up-conversion on Tm, Ho:YLF laser threshold. Acta Physica Sinica, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [18] Liu Qiang, Gong Ma Li, Li Chen, Gong Wu-Peng, Lu Fu-Yuan, Chen Gang. Corner-pumped Yb:YAG lasers. Acta Physica Sinica, 2005, 54(2): 721-725. doi: 10.7498/aps.54.721
    [19] Liu Qiang, Gong Ma-Li, Pan Yuan-Yuan, Li Chen. Edge-pumped composite thin-disc Yb:YAG/YAG laser: design and power scaling. Acta Physica Sinica, 2004, 53(7): 2159-2164. doi: 10.7498/aps.53.2159
    [20] Lv Zhi-Wei, Ding Ying-Chun, He Wei-Ming. . Acta Physica Sinica, 2002, 51(6): 1286-1290. doi: 10.7498/aps.51.1286
Metrics
  • Abstract views:  8298
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2019
  • Accepted Date:  27 January 2020
  • Published Online:  05 May 2020

/

返回文章
返回
Baidu
map