搜索

x
中国物理学会期刊

钙钛矿电池纳米陷光结构的研究进展

CSTR: 32037.14.aps.69.20191660

Review of the research on nano-structure used as light harvesting in perovskite solar cells

CSTR: 32037.14.aps.69.20191660
PDF
HTML
导出引用
  • 随着材料性能的不断提升, 近年来纳米陷光结构在钙钛矿电池中的应用受到越来越多的关注. 纳米陷光结构的引入可以改变光子在电池中的传输路径以及被电池吸收的光子能量. 将纳米陷光结构用于钙钛矿电池中的不同界面可以不同程度地增加电池对光的吸收, 最终提升电池效率. 如何有效地应用陷光结构是进一步提升钙钛矿电池转换效率的关键问题之一. 本文从阐述具有不同纳米陷光结构的钙钛矿电池性能出发, 对不同结构进行了对比与总结, 并分析了其中的优势与劣势.

     

    In recent years, nano-structures used as light harvesting have been widely used in perovskite cells to enhance the photon absorption of cells. The introduction of trapping structures in perovskite cells can change the photon propagation in the cell and the photon energy absorbed by the cell. The nano-structure used in different interfaces of perovskite cells can increase the absorption of light by the device to different degrees, and ultimately improve the efficiency of the solar cell. Therefore, the effective light trapping structure has become trending in the application of perovskite cells. How to effectively apply the such nano-structure is the key to improve the power conversion efficiency(PCE) of perovskite cells. So far, there is three ways including surface antireflection nanostructure, texture structure and plasmon nanostructure to apply to perovskite solar cell. The first one is ordered and disordered antireflection nanostructure that enhance the absorption of light on the surface of perovskite cells and makes visible light scatter at the interface of the nanostructure to reflection probability, the second one is texture structure that can not only improve the light absorption but avoid the formation of short-circuit channel inside the cell, the third one is plasmon nanostructure that can further improve the absorption of the thin film absorption material in the long band, so as to achieve the effect of improving the light utilization and cell efficiency. The trap structure is expected to achieve good photon absorption performance in wide spectral range and wide incidence angle range under the condition of reducing the thickness of active layer. At the same time, it has the advantages of good repeatability, easy to simulate and easy to change the structure. Therefore, using various trap technologies to design efficient trap structure has become a research hotspot in the field of solar cells. So far, most of the reports on the trapping structure have been applied to the silicon-based thin film solar cells, but few of them have been reported on the perovskite cells. This paper starts from the description of the perovskite cell with different nano-structures, comparing and summarizing the different structures, and analyzes the advantages and Disadvantage.

     

    目录

    /

    返回文章
    返回
    Baidu
    map