Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bifurcation and nonlinear evolution of convection in binary fluid mixtures with weak Soret effect

Zheng Lai-Yun Zhao Bing-Xin Yang Jian-Qing

Citation:

Bifurcation and nonlinear evolution of convection in binary fluid mixtures with weak Soret effect

Zheng Lai-Yun, Zhao Bing-Xin, Yang Jian-Qing
PDF
HTML
Get Citation
  • Rayleigh-Bénard (RB) convection in binary fluid mixtures, which shows rich and interesting pattern formation behavior, is a paradigm for understanding instabilities, bifurcations, self-organization with complex spatiotemporal behavior and turbulence, with many applications in atmospheric and environmental physics, astrophysics, and process technology. In this paper, by using a high-order compact finite difference method to solve the full hydrodynamic field equations, we study numerically the RB convection in binary fluid mixtures such as ethanol-water with a very weak Soret effect (separation ratio $\psi=-0.02$) in a rectangular container heated uniformly from below. The direct numerical simulations are conducted in the rectangular container with aspect ratio of $\varGamma=12$ and with four no-slip and impermeable boundaries, isothermal horizontal and perfectly insulated vertical boundaries. The bifurcation and the origin and evolution of pattern in RB convection for the considered physical parameters are studied, and the bifurcation diagram is presented. By performing two-dimensional simulations, we observe three stable states of Blinking state, localized traveling wave and stationary overturning convection (SOC) state, and discuss the transitions between them. The results show that there is a hysteresis in the transition from the Blinking state to the localized traveling wave state for the considered separation ratio, and the evolution of the oscillation frequency, convection amplitude and Nusselt number are discontinuous. Near the lower bound of the Rayleigh number range where the Blinking state exists, a asymmetric initial disturbance is the inducement for the formation of the Blinking state. Inside the range, its inducing effect is weakened, and the oscillatory instability becomes the main reason. It is further confirmed that reflections of lateral walls are responsible for the survival of the stable Blinking state. With the increase of the Rayleigh number, the critical SOC state undergoes multiple bifurcations and forms multiple SOC states with different wave numbers, and then transitions to a chaotic state. There are no stable undulation traveling wave states at both ends of the critical SOC branch.
      Corresponding author: Zhao Bing-Xin, zhao_bx@nxu.edu.cn
    [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851Google Scholar

    [2]

    Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757Google Scholar

    [3]

    Heinrichs R, Ahlers G, Cannell D S 1987 Phys. Rev. A 35 2761Google Scholar

    [4]

    Fineberg J, Moses E, Steinberg V 1988 Phys. Rev. Lett. 61 838Google Scholar

    [5]

    Kolodner P, Surko C M 1988 Phys. Rev. Lett. 61 842Google Scholar

    [6]

    Barten W, Lücke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5636Google Scholar

    [7]

    Barten W, Lücke M, Kamps M 1991 Phys. Rev. Lett. 66 2621Google Scholar

    [8]

    Barten W, Lücke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662Google Scholar

    [9]

    Batiste O, Net M, Mercader I, Knobloch E 2001 Phys. Rev. Lett. 86 2309Google Scholar

    [10]

    Batiste O, Knobloch E 2005 Phys. Rev. Lett. 95 244501Google Scholar

    [11]

    Ning L Z 2006 Rayleigh-Bénard convection in a binary fluid mixture with and without lateral flow (Xi’an: Northwest A&F University Press) pp41–56

    [12]

    李国栋, 黄永念 2007 56 4742Google Scholar

    Li G D, Huang Y N 2007 Acta Phys. Sin. 56 4742Google Scholar

    [13]

    宁利中, 齐昕, 周洋, 余荔 2009 58 2528Google Scholar

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528Google Scholar

    [14]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586Google Scholar

    [15]

    Mercader I, Batiste O, Alonso A, Knobloch E 2013 J. Fluid Mech. 722 240Google Scholar

    [16]

    王涛, 田振夫, 葛永斌 2011 水动学研究与进展(A辑) 26 41

    Wang T, Tian Z F, Ge Y B 2011 Chin. J. Hydrodyn. 26 41

    [17]

    Watanabe T, Iima M, Nishiura Y 2012 J. Fluid Mech. 712 219Google Scholar

    [18]

    Taraut A V, Smorodin B L, Lücke M 2012 New J. Phys. 14 093055Google Scholar

    [19]

    赵秉新 2012 水动力学研究与进展(A辑) 27 264

    Zhao B X 2012 Chin. J. Hydrodyn. 27 264

    [20]

    Shevtsova V, Gaponenko Y A, Sechenyh V, Melnikov D E, Lyubimova T, Mialdun A 2015 J. Fluid Mech. 767 290Google Scholar

    [21]

    Lyubimova T, Zubova N, Shevtsova V 2018 Microgravity Sci. Tec. 31 1

    [22]

    Alonso A, Mercader I, Batiste O 2018 Phys. Rev. E 97 023108Google Scholar

    [23]

    Smorodin B L, Ishutov S M, Myznikova B I 2017 Microgravity Sci. Technol. 30 95

    [24]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

    [25]

    Mercader I, Batiste O, Alonso A, Knobloch E 2019 Phys. Rev. E 99 023113Google Scholar

    [26]

    Lyubimova T, Zubova N 2017 Int. J. Heat Mass Transfer 106 1134Google Scholar

    [27]

    宁利中, 刘爽, 宁碧波, 袁喆, 王新宏, 田伟利, 渠亚伟 2018 水动力学研究与进展(A辑) 33 515

    Ning L Z, Liu S, Ning B B, Tian W L, Qu Y W 2018 Chin. J. Hydrodyn. 33 515

    [28]

    宁利中, 徐泊冰, 宁碧波, 袁喆, 田伟利 2019 水动力学研究与进展(A辑) 34 93

    Ning L Z, Xu B B, Ning B B, Yuan Z, Tian W L 2019 Chin. J. Hydrodyn. 34 93

    [29]

    宁利中, 余荔, 袁喆, 周洋 2009 中国科学: 物理学 力学 天文学 39 746

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. Sin.-Phys. Mech. Astron. 39 746

    [30]

    宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401Google Scholar

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401Google Scholar

    [31]

    Qin Q, Xia Z A, Tian Z F 2014 Int. J. Heat Mass Transfer 71 405Google Scholar

    [32]

    Tian Z F, Liang X, Yu P X 2011 Int. J. Numer. Meth. Een. 88 511Google Scholar

    [33]

    Strogatz S H 1994 Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing LLC) pp58–60

    [34]

    Dangelmayr G, Knobloch E, Wegelin M 1991 EPL-Europhys. Lett. 16 723Google Scholar

  • 图 1  对流模型示意图

    Figure 1.  Sketch of the two-dimensional convection model

    图 2  $ \psi=-0.02 $时Nusselt数$ Nu-1 $关于Rayleigh数r的分岔曲线. SOC$ _n $表示具有n个涡卷的SOC状态

    Figure 2.  (a) Bifurcation diagram for $ \psi=-0.02 $. (b) close-up view of the part of the bifurcation diagram delimited by the straight dashed lines depicted in (a). Where SOC$ _n $ represents the SOC solutions with n rolls

    图 3  $ r=1.015 $时 (a) 流场时空结构, (b) $ w(0.13\varGamma, 0.5) $的时间序列和(c)功率谱密度

    Figure 3.  (a) Spatio-temporal structure, (b) the time series of $ w(0.13\varGamma, 0.5) $ and (c) power spectral density for $ r=1.015 $

    图 4  $ r=1.015 $时, 两个观测点处垂向速度w随时间的发展

    Figure 4.  The time series of the vertical velocity w at two monitoring points (a) $ (0.13\varGamma, 0.5) $ and (b) $ (0.87\varGamma, 0.5) $ for $ r=1.015 $

    图 5  $ r=1.0171 $时, Blinking状态与LTW状态流场典型波形和浓度场的比较

    Figure 5.  Comparison of the lateral profiles and concentration fields between the Blinking and LTW states at $ r=1.0171 $: (a) The lateral profile and (c) concentration field of the Blinking state; (b) The lateral profile and (d) concentration field of the LTW state

    图 6  (a)闪动频率$ \omega_1 $和(b)行波频率$ \omega_2 $随Rayleigh数的变化

    Figure 6.  The variation of (a) blinking frequency $ \omega_1 $ and (b) oscillation frequency $ \omega_2 $ as a function of the Rayleigh number

    图 7  Blinking和LTW状态的$ Nu-1 $r的变化情况. (b)为(a)中虚线标注矩形区域的局部放大

    Figure 7.  The variation of $ Nu-1 $ of the Blinking and LTW states as a function of r. (b) Close-up view of the part delimited by the straight dashed lines depicted in (a)

    图 8  LTW状态的流场结构

    Figure 8.  Structures of the flow field of LTW state: (a) Spatio-temporal structure; (b) a large-scale concentration current; (c) a transient structure of the concentration field

    图 9  $ r=1.13 $时流场时空发展和典型时刻的瞬时结构

    Figure 9.  The spatio-temporal development and transient structures of the flow field at typical times for $ r=1.13 $

    图 10  $ r=1.13 $时 (a)$ Nu-1 $M的变化及(b)观测点处垂向速度的时间序列

    Figure 10.  The variation of (a) $ Nu-1 $, M, and (b) the vertical velocity at the monitoring points for $ r=1.13 $

    图 11  $ r=1.13 $时SOC$ _{12} $状态的流场结构

    Figure 11.  The structure of flow field for the SOC$ _{12} $ state at $ r=1.13 $: (a) The lateral profile on the horizontal centerline of the cavity; (b) the streamlines and the structure of the associated temperature field; (c) the structure of the concentration field

    图 12  SOC$ _{12} $状态Nusselt数随Rayleigh数的变化

    Figure 12.  The variation of $ Nu $ with r for the SOC$ _{12} $ state

    表 1  分离比$ \psi = -0.10 $和–0.02时, 各状态临界Rayleigh数的比较

    Table 1.  Comparison of critical Rayleigh numbers for each state, $ \psi = -0.10 $ and $ -0.02 $

    $ \psi $ $ r_{\rm c} $ $ r_{\rm {sn}}^{\rm {SOC}} $ $ r_{\rm {start}}^{\rm {BTW}} $ $ r_{\rm {start}}^{\rm {LTW}} $ $ r^* $
    –0.10 1.111 1.062 1.089 1.145
    –0.02 1.035 1.008 1.013 1.0172 1.022
    DownLoad: CSV
    Baidu
  • [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851Google Scholar

    [2]

    Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757Google Scholar

    [3]

    Heinrichs R, Ahlers G, Cannell D S 1987 Phys. Rev. A 35 2761Google Scholar

    [4]

    Fineberg J, Moses E, Steinberg V 1988 Phys. Rev. Lett. 61 838Google Scholar

    [5]

    Kolodner P, Surko C M 1988 Phys. Rev. Lett. 61 842Google Scholar

    [6]

    Barten W, Lücke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5636Google Scholar

    [7]

    Barten W, Lücke M, Kamps M 1991 Phys. Rev. Lett. 66 2621Google Scholar

    [8]

    Barten W, Lücke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662Google Scholar

    [9]

    Batiste O, Net M, Mercader I, Knobloch E 2001 Phys. Rev. Lett. 86 2309Google Scholar

    [10]

    Batiste O, Knobloch E 2005 Phys. Rev. Lett. 95 244501Google Scholar

    [11]

    Ning L Z 2006 Rayleigh-Bénard convection in a binary fluid mixture with and without lateral flow (Xi’an: Northwest A&F University Press) pp41–56

    [12]

    李国栋, 黄永念 2007 56 4742Google Scholar

    Li G D, Huang Y N 2007 Acta Phys. Sin. 56 4742Google Scholar

    [13]

    宁利中, 齐昕, 周洋, 余荔 2009 58 2528Google Scholar

    Ning L Z, Qi X, Zhou Y, Yu L 2009 Acta Phys. Sin. 58 2528Google Scholar

    [14]

    Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586Google Scholar

    [15]

    Mercader I, Batiste O, Alonso A, Knobloch E 2013 J. Fluid Mech. 722 240Google Scholar

    [16]

    王涛, 田振夫, 葛永斌 2011 水动学研究与进展(A辑) 26 41

    Wang T, Tian Z F, Ge Y B 2011 Chin. J. Hydrodyn. 26 41

    [17]

    Watanabe T, Iima M, Nishiura Y 2012 J. Fluid Mech. 712 219Google Scholar

    [18]

    Taraut A V, Smorodin B L, Lücke M 2012 New J. Phys. 14 093055Google Scholar

    [19]

    赵秉新 2012 水动力学研究与进展(A辑) 27 264

    Zhao B X 2012 Chin. J. Hydrodyn. 27 264

    [20]

    Shevtsova V, Gaponenko Y A, Sechenyh V, Melnikov D E, Lyubimova T, Mialdun A 2015 J. Fluid Mech. 767 290Google Scholar

    [21]

    Lyubimova T, Zubova N, Shevtsova V 2018 Microgravity Sci. Tec. 31 1

    [22]

    Alonso A, Mercader I, Batiste O 2018 Phys. Rev. E 97 023108Google Scholar

    [23]

    Smorodin B L, Ishutov S M, Myznikova B I 2017 Microgravity Sci. Technol. 30 95

    [24]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

    [25]

    Mercader I, Batiste O, Alonso A, Knobloch E 2019 Phys. Rev. E 99 023113Google Scholar

    [26]

    Lyubimova T, Zubova N 2017 Int. J. Heat Mass Transfer 106 1134Google Scholar

    [27]

    宁利中, 刘爽, 宁碧波, 袁喆, 王新宏, 田伟利, 渠亚伟 2018 水动力学研究与进展(A辑) 33 515

    Ning L Z, Liu S, Ning B B, Tian W L, Qu Y W 2018 Chin. J. Hydrodyn. 33 515

    [28]

    宁利中, 徐泊冰, 宁碧波, 袁喆, 田伟利 2019 水动力学研究与进展(A辑) 34 93

    Ning L Z, Xu B B, Ning B B, Yuan Z, Tian W L 2019 Chin. J. Hydrodyn. 34 93

    [29]

    宁利中, 余荔, 袁喆, 周洋 2009 中国科学: 物理学 力学 天文学 39 746

    Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. Sin.-Phys. Mech. Astron. 39 746

    [30]

    宁利中, 王娜, 袁喆, 李开继, 王卓运 2014 63 104401Google Scholar

    Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2014 Acta Phys. Sin. 63 104401Google Scholar

    [31]

    Qin Q, Xia Z A, Tian Z F 2014 Int. J. Heat Mass Transfer 71 405Google Scholar

    [32]

    Tian Z F, Liang X, Yu P X 2011 Int. J. Numer. Meth. Een. 88 511Google Scholar

    [33]

    Strogatz S H 1994 Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing LLC) pp58–60

    [34]

    Dangelmayr G, Knobloch E, Wegelin M 1991 EPL-Europhys. Lett. 16 723Google Scholar

  • [1] Zhao Ya-Qi, Liu Mou-Tian, Zhao Yong, Duan Li-Xia. Dynamics of mixed bursting in coupled pre-Bötzinger complex. Acta Physica Sinica, 2021, 70(12): 120501. doi: 10.7498/aps.70.20210093
    [2] Jiang Yi-Lan, Lu Bo, Zhang Wan-Qin, Gu Hua-Guang. Fast autaptic feedback induced-paradoxical changes of mixed-mode bursting and bifurcation mechanism. Acta Physica Sinica, 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [3] Yin Hui, Zhao Bing-Xin. Effect of inclination on nonlinear evolution and bifurcation of thermal convection in a square cavity. Acta Physica Sinica, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [4] Lin Mao-Jie, Chang Jian, Wu Yu-Hao, Xu Shan-Sen, Wei Bing-Bo. Fluid convection and solidification mechanisms of liquid Fe50Cu50 alloy under electromagnetic levitation condition. Acta Physica Sinica, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [5] Ning Li-Zhong, Hu Biao, Ning Bi-Bo, Tian Wei-Li. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bnard flow. Acta Physica Sinica, 2016, 65(21): 214401. doi: 10.7498/aps.65.214401
    [6] Shi Lan-Fang, Zhu Min, Zhou Xian-Chun, Wang Wei-Gang, Mo Jia-Qi. The solitary traveling wave solution for a class of nonlinear evolution equations. Acta Physica Sinica, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [7] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [8] Huang Chen, Chen Long, Bi Qin-Sheng, Jiang Hao-Bin. Vehicle negotiation model and bifurcation dynamic characteristics research. Acta Physica Sinica, 2013, 62(21): 210507. doi: 10.7498/aps.62.210507
    [9] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [10] Li Qun-Hong, Yan Yu-Long, Yang Dan. Bifurcations in coupled electrical circuit systems. Acta Physica Sinica, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [11] Feng Chao-Wen, Cai Li, Yang Xiao-Kuo, Kang Qiang, Peng Wei-Dong, Bai Peng. Research of one-dimensional discrete chaotic system constructed by the hybrid circuits of single-electron transistor and metal oxide semiconductor. Acta Physica Sinica, 2012, 61(8): 080503. doi: 10.7498/aps.61.080503
    [12] Shi Yu-Feng, Xu Qing-Yan, Liu Bai-Cheng. Simulation and experimental research of melt convection on dendrite morphology evolution. Acta Physica Sinica, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [13] Chen Zhang-Yao, Bi Qin-Sheng. Bifurcations and chaos of coupled Jerk systems. Acta Physica Sinica, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [14] Jiang Ze-Hui, Zhang Feng, Guo Bo, Zhao Hai-Fa, Zheng Rui-Hua. Convection and crystallization in vertically vibrated granular “capillary” systems. Acta Physica Sinica, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [15] Bao Bo-Cheng, Kang Zhu-Sheng, Xu Jian-Ping, Hu Wen. Bifurcation and attractor of generalized square map with exponential term. Acta Physica Sinica, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [16] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [17] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [18] Ning Li-Zhong, Qi Xin, Yu Li, Zhou Yang. Defect structures of Rayleigh-Benard travelling wave convection in binary fluid mixtures. Acta Physica Sinica, 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [19] Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming. Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [20] Hao Jian-Hong, Ding Wu. Limit cycle oscillating and chaos of the radiation field in a traveling wave tube amplifier. Acta Physica Sinica, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
Metrics
  • Abstract views:  6929
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2019
  • Accepted Date:  27 December 2019
  • Published Online:  05 April 2020

/

返回文章
返回
Baidu
map