-
The Grossman and Lohse (GL) theory is an important theory for studying the heat transfer characteristics of the turbulent convection. Previous computational studies have found that when the Ra number is higher than a certain value, the change of the heat transfer Nu number with Ra number in two-dimensional turbulent thermal convection is different from that in the three-dimensional thermal convection, deviating from the multiples line of the GL theory prediction. Therefore, the value of studying the two-dimensional numerical calculation of turbulent thermal convection with high Ra number is questioned. The numerical calculations of a series of two-dimensional turbulent thermal convection events with high and very high Ra number(specifically, maximum Ra = 1013 with Pr = 0.7 and 4.3) are carried out in this paper. The results show that there exists a good correlation between the heat transfer Nu number and the variation of large scale circulation path length(that reflects the plume motion) with Ra number in the two-dimensional turbulent convection, and they have two Ra number transition points. The first transition point appears in the large scale circulation from the ellipse to the circle, when its circumference CLSC of the large scale circulation suddenly decreases with Ra number increasing. The second transition point appears at the minimum circumference CLSC, and then the plume rheology becomes vortex group and the circumference CLSC increases with Ra number increasing. The Ra number at transition point for a smaller Pr number is lower. The variation of the heat transfer Nu number after Ra0.3 compensation shows that the local scale law of Nu number decreases as the circumference CLSC of the large scale circulation becomes small, and a phenomenon of deviating from the multiples line of GL theory prediction appears. When Ra number is higher than the second transition point, the local scale law of the Nu number varying with Ra number is in good agreement with the multiples line of GL theory prediction again in 2D turbulent thermal convection. It means that the numerical results of two-dimensional turbulent thermal convection can correctly reflect the heat transfer characteristics of turbulent thermal convection under the condition of very high Ra number.
-
Keywords:
- 2D turbulent convection /
- heat transfer characteristics /
- large scale circulation path circumference /
- very high Ra number /
- Grossman and Lohse theory
[1] Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar
[2] Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar
[3] Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar
[4] He X, van Gils D P M, Bodenschatz E, Ahlers G 2015 New J. Phys. 17 63028Google Scholar
[5] Zhou Q, Xia K Q 2010 Phys. Rev. Lett. 104 104301Google Scholar
[6] Stevens R J A M, Lohse D, Verzicoo R 2011 J. Fluid Mech. 688 31Google Scholar
[7] Zhu X, Mathai V, Stevens R J A M, et al. 2018 Phys. Rev. Lett. 120 144502Google Scholar
[8] Stevens R J A M, Blass A, Zhu X J 2018 Phys. Rev. Fluids 3 04150
[9] 黄茂静, 包芸 2016 65 204702Google Scholar
Huang M J, Bao Y 2016 Acta Phys. Sin. 65 204702Google Scholar
[10] 包芸, 高振源, 叶孟翔 2018 67 104701
Bao Y, Gao Z Y, Ye M X 2018 Acta Phys. Sin. 67 104701
[11] Bao Y, Chen J, Liu B F, et al. 2015 J. Fluid Mech. 784 R5Google Scholar
[12] Chen J, Bao Y, Yin Z X, et al. 2017 Int. J. Heat Mass Transfer 115 556Google Scholar
[13] 林泽鹏, 包芸 2018 中国科学: 物理学力学天文学 48 054702
Lin Z P, Bao Y 2018 Sci. Sin.Phys. Mech. Astron. 48 054702
[14] 林泽鹏, 包芸 2018 中国科学: 物理学力学天文学 48 104702
Lin Z P, Bao Y 2018 Sci. Sin.Phys. Mech. Astron. 48 104702
[15] Shishkina O, Horn S, Wagner S, et al. 2015 Phys. Rev. Lett 114 114302Google Scholar
[16] 何鹏, 黄茂静, 包芸 2018 中国科学: 物理学力学天文学 48 124702
He P, Huang M J, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 124702
[17] Gao Z Y, Luo J H, Bao Y 2018 Chin. Phys. B 27 104702Google Scholar
[18] van der Poel E P, Stevens R J A M, Lohse D 2013 J. Fluid Mech. 736 177Google Scholar
[19] Bao Y, Luo J H, Ye M X 2018 J. Mech. 34 159Google Scholar
[20] Stevens RJAM, van der Poel E P, Grossmann S, et al. 2013 J. Fluid Mech. 730 295Google Scholar
[21] Zhang Y, Huang Y X, Jiang N, et al. 2017 Phys. Rev. E 96 023105Google Scholar
[22] Sun C, Xia K Q 2005 Phys. Rev. E 72 067302Google Scholar
-
表 1 计算Ra数
Table 1. The Ra numbers.
Ra 107, 2×107, 5×107, 108, 2×108, 5×108, 109, 2×109, 5×109, 1010, 2×1010, 5×1010, 1011, 5×1011, 1012, 2×1012, 1013 -
[1] Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar
[2] Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar
[3] Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar
[4] He X, van Gils D P M, Bodenschatz E, Ahlers G 2015 New J. Phys. 17 63028Google Scholar
[5] Zhou Q, Xia K Q 2010 Phys. Rev. Lett. 104 104301Google Scholar
[6] Stevens R J A M, Lohse D, Verzicoo R 2011 J. Fluid Mech. 688 31Google Scholar
[7] Zhu X, Mathai V, Stevens R J A M, et al. 2018 Phys. Rev. Lett. 120 144502Google Scholar
[8] Stevens R J A M, Blass A, Zhu X J 2018 Phys. Rev. Fluids 3 04150
[9] 黄茂静, 包芸 2016 65 204702Google Scholar
Huang M J, Bao Y 2016 Acta Phys. Sin. 65 204702Google Scholar
[10] 包芸, 高振源, 叶孟翔 2018 67 104701
Bao Y, Gao Z Y, Ye M X 2018 Acta Phys. Sin. 67 104701
[11] Bao Y, Chen J, Liu B F, et al. 2015 J. Fluid Mech. 784 R5Google Scholar
[12] Chen J, Bao Y, Yin Z X, et al. 2017 Int. J. Heat Mass Transfer 115 556Google Scholar
[13] 林泽鹏, 包芸 2018 中国科学: 物理学力学天文学 48 054702
Lin Z P, Bao Y 2018 Sci. Sin.Phys. Mech. Astron. 48 054702
[14] 林泽鹏, 包芸 2018 中国科学: 物理学力学天文学 48 104702
Lin Z P, Bao Y 2018 Sci. Sin.Phys. Mech. Astron. 48 104702
[15] Shishkina O, Horn S, Wagner S, et al. 2015 Phys. Rev. Lett 114 114302Google Scholar
[16] 何鹏, 黄茂静, 包芸 2018 中国科学: 物理学力学天文学 48 124702
He P, Huang M J, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 124702
[17] Gao Z Y, Luo J H, Bao Y 2018 Chin. Phys. B 27 104702Google Scholar
[18] van der Poel E P, Stevens R J A M, Lohse D 2013 J. Fluid Mech. 736 177Google Scholar
[19] Bao Y, Luo J H, Ye M X 2018 J. Mech. 34 159Google Scholar
[20] Stevens RJAM, van der Poel E P, Grossmann S, et al. 2013 J. Fluid Mech. 730 295Google Scholar
[21] Zhang Y, Huang Y X, Jiang N, et al. 2017 Phys. Rev. E 96 023105Google Scholar
[22] Sun C, Xia K Q 2005 Phys. Rev. E 72 067302Google Scholar
Catalog
Metrics
- Abstract views: 7718
- PDF Downloads: 64
- Cited By: 0