Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-point and four-point mechanical bending test modeling and application in solar cells

He Ren Li Ying-Ye Chen Jing-Xin Zhao Xue-Ling Tang Huan Zhang Li-Na Shen Yan-Jiao Li Feng Yang Lin Wei De-Yuan

Citation:

Three-point and four-point mechanical bending test modeling and application in solar cells

He Ren, Li Ying-Ye, Chen Jing-Xin, Zhao Xue-Ling, Tang Huan, Zhang Li-Na, Shen Yan-Jiao, Li Feng, Yang Lin, Wei De-Yuan
PDF
HTML
Get Citation
  • Silicon (Si)-wafer-based solar cells have dominated the global market with a share exceeding 90% due to their abundant source material and well-known physical and chemical properties. The brittleness of silicon material limits its further applications. It is necessary to investigate the material strength properties of Si wafer and/or Si solar cells, which can guide the fabrication process of Si solar cells to avoid breaking the Si wafers. The Si material strength properties have been extensively investigated by the methods of three-point bending test and four-point bending test. However, the difference between these two methods has not been studied so far.In this work, the mechanical strength properties of monocrystalline silicon (c-Si) wafer and bifacial c-Si solar cells are measured by three-point bending test and four-point bending test respectively. The average value of the maximum bending displacements has a little discrepancy between the results of the three-point bending test and four-point bending test methods. It is worth noting that the degree of dispersion of the Si wafer test results of the three-point bending test is larger than those of the four-point bending test. And the results of the dispersion of the Si bifacial solar cells, obtained from the two bending test methods, show no difference between them due to the existence of metalized electrodes. Whether the measured sample is Si wafer or Si solar cell, the average value of the maximum load, obtained from the four-point bending test, is higher than that from the three point-bending test method, and the average value of the fracture strength, obtained from the four-point bending test, is lower than that from the three-point bending test method. By establishing the models of different beams, the applied load gets dispersed through two bars of the four-point bending test method, whereas the applied load is directly applied to the sample through one bar of the three-point bending test method, which can explain the relatively large difference between these two test methods.
      Corresponding author: Wei De-Yuan, deyuan.wei@hotmail.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704045) and the National Natural Science Foundation of China (Grant No. 11604072).
    [1]

    Battaglia C, Cuevas A, de Wolf S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [2]

    Borrerolopez O, Vodenitcharova T, Hoffman M, Leo A J 2009 J. Am. Ceram. Soc. 92 2713Google Scholar

    [3]

    Paul I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991Google Scholar

    [4]

    Funke C, Wolf S, Stoyan D 2009 J. Sol. Energy Eng. 131 011012Google Scholar

    [5]

    Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J 2007 Microelectron. Reliab. 47 168Google Scholar

    [6]

    Sekhar H, Fukuda T, Tanahashi K 2018 Jpn. J. Appl. Phys. 57 08RB08Google Scholar

    [7]

    Li Z L, Wang L, Yang D R, Zhu X, Shi Y Z, Jiang W L 2011 Acta Energiae Solaris Sinica 32 225

    [8]

    Wang P, Yu X G, Li Z L, Yang D R 2011 J. Cryst. Growth 318 230Google Scholar

    [9]

    Rengarajan K N, Radchenko I, Illya G, Handara V, Kunz M, Tamura N, Budiman A S 2016 8th International Conference on Materials for Advanced Technologies Singapore, 28 June–3 July, 2015 p76

    [10]

    Heilbronn B, de Moro F, Jolivet E, Tupin E, Chau B, Varrot R, Drevet B, Bailly S, Rey D, Lignier H, Xi Y H, Mangelinck N, Reinhart G, Regula G 2015 Cryst. Res. Technol. 50 101Google Scholar

    [11]

    Barredo J, Parra V, Guerrero I, Fraile A, Hermanns L 2013 Prog. Photovoltaics 22 1204

    [12]

    Woo J, Kim Y, Kim S, Jang J, Han H N, Choi K J, Kim I, Kim J 2017 Scripta Mater. 140 1Google Scholar

    [13]

    Oswald M, Loewenstein T, Schubert G, Schoenfelder S 2012 6th International Workshop on Crystalline Silicon Solar Cells Aixles-bains France, October 8–11, 2012

    [14]

    Echizenya D, Sakamoto H, Sasaki K 2011 Procedia Engineering 10 1440Google Scholar

    [15]

    Haase F, Kasewieter J, Köntges M 2016 6th International Conference on Silicon Photovoltaics Chambery France, March 7–9, 2016 p554

    [16]

    Popovich V A 2014 Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells (Netherlands: Delft University of Technology) p115

    [17]

    Mansfield B R, Armstrong D E, Wilshaw P R, Murphy J D 2009 Solid State Phenomena 156158 p55

    [18]

    Cotterell B, Chen Z, Han J, Tan N 2003 J. Electron. Packaging 125 114Google Scholar

    [19]

    Sekhar H, Fukuda T, Tanahashi K, Shirasawa K, Takato H, Ohkubo K, Ono H, Sampei Y, Kobayashi T 2018 Jpn. J. Appl. Phys. 57 095501Google Scholar

    [20]

    Kaule F, Kohler B, Hirsch J, Schoenfeldera S, Lauscha D 2018 Sol. Energ. Mat. Sol. C. 185 511Google Scholar

    [21]

    Gou W X 2010 Mechanics of Materials (Beijing: Science Press) p152

  • 图 1  双面电池结构示意图

    Figure 1.  The schematic diagram of the structure of bifacial solar cell.

    图 2  测试参数示意图 (a) 三点弯曲; (b) 四点弯曲

    Figure 2.  The schematic of test parameter: (a) Three point bengding; (b) four point bengding.

    图 3  硅片三点和四点弯曲测试数据对比 (a) 载荷与位移的变化曲线; (b) 最大弯曲位移; (c) 最大载荷; (d) 断裂强度

    Figure 3.  Parameter comparison of silicon wafer test of three point and four point bending test: (a) Force as function of the bending value; (b) maximum bending displacement; (c) maximum force; (d) fracture strength.

    图 4  双面电池三点和四点弯曲测试数据对比 (a) 载荷与位移的变化曲线; (b) 最大弯曲位移; (c) 最大载荷; (d) 断裂强度

    Figure 4.  Parameter comparison of bifacial solar cells test of three point and four point bending test: (a) Force as function of the bending value; (b) maximum bending displacement; (c) maximum force; (d) fracture strength.

    图 5  作用力和弯矩图 (a) 三点弯曲; (b) 四点弯曲

    Figure 5.  The model diagram of force and bending moment: (a) Three point bending test; (b) four point bending test.

    表 1  三点弯曲和四点弯曲测试的比较

    Table 1.  Comparison of three point bending and four point bending tests.

    单位国家样片厚度测试方法研究内容年份参考文献
    TNI-UCC爱尔兰单晶硅片50—525 μm三点弯曲用统计方法建立了不同厚度单晶硅材料断裂强度的模型2006[3]
    Fraunhofer -IMM德国单晶硅片48—200 μm三点弯曲分析了磨削、抛光、蚀刻工艺对薄硅试样机械强度的影响2007[5]
    RERC-FREI-AIST日本单晶硅片200—250 μm三点弯曲金刚线切割时产生的应力损伤层对单晶硅片机械性能的影响2008[6]
    浙江大学中国单晶硅电池200 μm三点弯曲背电极花样对单晶硅电池的机械强度有明显影响2011[7]
    浙江大学中国多晶硅片220 μm三点弯曲铸锭多晶硅中, 锗掺杂能增强多晶硅片的机械强度2011[8]
    SUTD新加坡光伏组件三点弯曲封装材料对太阳能光伏组件的可靠性影响2016[9]
    Solarforce S.A.法国多晶硅片60—140 μm四点弯曲研究了带状生长多晶硅的弯曲强度随不同工艺条件的变化2015[10]
    UNSW澳大利亚多晶硅片200 μm四点弯曲硅片的边缘缺陷对多晶硅片断裂强度的影响2009[2]
    CMME西班牙多晶、单晶、类单晶200 μm四点弯曲对相同厚度的多晶、单晶、类单晶的晶体硅片的机械强度进行了比较2014[11]
    IEP-TUBF德国多晶硅片250—300 μm四点弯曲研究了损伤腐蚀对太阳能硅片力学性能的影响2009[4]
    UNIST韩国单晶硅片50 μm四点弯曲同制绒工艺改变硅片表面形貌对晶体硅机械性能的影响2017[12]
    Fraunhofer -CSP德国多晶硅片四点弯曲激光钻孔对机械性能的影响2012[13]
    MEC日本多晶硅片200—300 μm四点弯曲金刚线切割多晶硅片的弯曲强度, 并对不同强度值产生的原因进行了分析2011[14]
    ISFH德国光伏组件四点弯曲标准尺寸太阳能光伏组件在受压情况下的裂纹分布情况2016[15]
    注: TNI-UCC, Tyndall National Institute, University College Cork (科克大学, 廷德尔国立研究所); Fraunhofer-IMM, Fraunhofer-Institute for Mechanics of Materials (弗劳恩霍夫材料力学研究所); RERC-FREI-AIST, Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology (国家先进工业科学技术研究所, 福岛可再生能源研究所, 可再生能源研究中心); SUTD, Singapore University of Technology and Design (新加坡科技设计大学) UNSW, University of New South Wales (新南威尔士大学); IEP-TUBF, Institute of Experimental Physics, TU Bergakademie Freiberg (弗莱贝格工业大学, 实验物理研究所); MEC, Mitsubishi Electric Corporation (三菱电力公司); Fraunhofer-CSP, Fraunhofer Center for Silicon Photovoltaics (弗劳恩霍夫硅光电中心); CMME, Centre for Modelling in Mechanical Engineering (机械工程建模中心); Solarforce S.A., 太阳力股份有限公司; ISFH, Institute for Solar Energy Research Hamelin (哈梅林太阳能研究所); UNIST, Ulsan National Institute of Science and Technology (蔚山国家科学技术研究院).
    DownLoad: CSV
    Baidu
  • [1]

    Battaglia C, Cuevas A, de Wolf S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [2]

    Borrerolopez O, Vodenitcharova T, Hoffman M, Leo A J 2009 J. Am. Ceram. Soc. 92 2713Google Scholar

    [3]

    Paul I, Majeed B, Razeeb K M, Barton J 2006 Acta Mater. 54 3991Google Scholar

    [4]

    Funke C, Wolf S, Stoyan D 2009 J. Sol. Energy Eng. 131 011012Google Scholar

    [5]

    Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J 2007 Microelectron. Reliab. 47 168Google Scholar

    [6]

    Sekhar H, Fukuda T, Tanahashi K 2018 Jpn. J. Appl. Phys. 57 08RB08Google Scholar

    [7]

    Li Z L, Wang L, Yang D R, Zhu X, Shi Y Z, Jiang W L 2011 Acta Energiae Solaris Sinica 32 225

    [8]

    Wang P, Yu X G, Li Z L, Yang D R 2011 J. Cryst. Growth 318 230Google Scholar

    [9]

    Rengarajan K N, Radchenko I, Illya G, Handara V, Kunz M, Tamura N, Budiman A S 2016 8th International Conference on Materials for Advanced Technologies Singapore, 28 June–3 July, 2015 p76

    [10]

    Heilbronn B, de Moro F, Jolivet E, Tupin E, Chau B, Varrot R, Drevet B, Bailly S, Rey D, Lignier H, Xi Y H, Mangelinck N, Reinhart G, Regula G 2015 Cryst. Res. Technol. 50 101Google Scholar

    [11]

    Barredo J, Parra V, Guerrero I, Fraile A, Hermanns L 2013 Prog. Photovoltaics 22 1204

    [12]

    Woo J, Kim Y, Kim S, Jang J, Han H N, Choi K J, Kim I, Kim J 2017 Scripta Mater. 140 1Google Scholar

    [13]

    Oswald M, Loewenstein T, Schubert G, Schoenfelder S 2012 6th International Workshop on Crystalline Silicon Solar Cells Aixles-bains France, October 8–11, 2012

    [14]

    Echizenya D, Sakamoto H, Sasaki K 2011 Procedia Engineering 10 1440Google Scholar

    [15]

    Haase F, Kasewieter J, Köntges M 2016 6th International Conference on Silicon Photovoltaics Chambery France, March 7–9, 2016 p554

    [16]

    Popovich V A 2014 Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells (Netherlands: Delft University of Technology) p115

    [17]

    Mansfield B R, Armstrong D E, Wilshaw P R, Murphy J D 2009 Solid State Phenomena 156158 p55

    [18]

    Cotterell B, Chen Z, Han J, Tan N 2003 J. Electron. Packaging 125 114Google Scholar

    [19]

    Sekhar H, Fukuda T, Tanahashi K, Shirasawa K, Takato H, Ohkubo K, Ono H, Sampei Y, Kobayashi T 2018 Jpn. J. Appl. Phys. 57 095501Google Scholar

    [20]

    Kaule F, Kohler B, Hirsch J, Schoenfeldera S, Lauscha D 2018 Sol. Energ. Mat. Sol. C. 185 511Google Scholar

    [21]

    Gou W X 2010 Mechanics of Materials (Beijing: Science Press) p152

  • [1] Wang Yin, Wang Ren-Ying, Chen Qiao, Deng Yong-He. Effect of inter-dot tunneling coupling on soliton dynamical behaviors in four-level triple quantum dot EIT medium. Acta Physica Sinica, 2024, 73(4): 044202. doi: 10.7498/aps.73.20231194
    [2] Xie Bing-Hong, Xu Guo-Kai, Lei Bao-Xin, Xiao Shao-Qiu, Yu Zhong-Jun, Zhu Da-Li. Modeling and performance analysis of resonant self-biased magnetoelectric transducers. Acta Physica Sinica, 2024, 73(14): 147502. doi: 10.7498/aps.73.20240615
    [3] Shen Yong, Shen Yu-Hang, Dong Jia-Qi, Li Jia, Shi Zhong-Bing, Zong Wen-Gang, Pan Li, Li Ji-Quan. Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types. Acta Physica Sinica, 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [4] Liu Xing, Xu Shuai, Gao Jin-Zhu, He Ji-Zhou. Four-terminal hybrid driven refrigerator based on three coupled quantum dots. Acta Physica Sinica, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [5] Lu Yi-Min, Huang Guo-Jun, Cheng Yong, Wang Sai, Liu Xu, Wei Shang-Fang, Mi Chao-Wei. Tribological and mechanical properties of non-hydrogenated W-doped diamond-like carbon film prepared by pulsed laser deposition. Acta Physica Sinica, 2021, 70(4): 046801. doi: 10.7498/aps.70.20201505
    [6] Ma Shuang, Wu Ren-Tu-Ya, O Tegus, Wu Xiao-Xia, Guan Peng-Fei, Bai Narsu. First principles study of mechanical properties of FeMnP1-xTx (T=Si, Ga, Ge) compounds. Acta Physica Sinica, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [7] Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di. Irradiation-induced modifications in the mechanical properties of borosilicate glass. Acta Physica Sinica, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [8] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [9] Bao Bo-Cheng, Wang Chun-Li, Wu Hua-Gan, Qiao Xiao-Hua. Dimensionality reduction modeling and characteristic analysis of memristive circuit. Acta Physica Sinica, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [10] Wang Xin, Lou Shu-Qin, Lu Wen-Liang. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [11] Huang Wei-Qi, Zhou Nian-Jie, Yin Jun, Miao Xin-Jian, Huang Zhong-Mei, Chen Han-Qiong, Su Qin, Liu Shi-Rong, Qin Chao-Jian. Shape and curved surface effect on silicon quantum dots. Acta Physica Sinica, 2013, 62(8): 084205. doi: 10.7498/aps.62.084205
    [12] Xu Ling-Mao, Gao Chao, Dong Peng, Zhao Jian-Jiang, Ma Xiang-Yang, Yang De-Ren. Dislocation motion during rapid thermal processing of single-crystalline silicon wafers. Acta Physica Sinica, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [13] Wang Cong-Qing, Wu Peng-Fei, Zhou Xin. Control and modeling of chaotic dynamics for a free-floating rigid-flexible coupling space manipulator based on minimal joint torque's optimization. Acta Physica Sinica, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [14] Pan Xiao-Juan, He Xi-Ping. Analysis of flexural vibration thick disk. Acta Physica Sinica, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [15] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. Influences of substrate temperature on crystalline characteristics and mechanical properties of SiNx films deposited by microwave electron cyclotron resonance magnetron sputtering. Acta Physica Sinica, 2008, 57(8): 5170-5175. doi: 10.7498/aps.57.5170
    [16] Li Jun, Dong Hai-Ying. Modelling of chaotic systems using wavelet kernel partial least squares regression method. Acta Physica Sinica, 2008, 57(8): 4756-4765. doi: 10.7498/aps.57.4756
    [17] Cai Xin-Lun, Huang De-Xiu, Zhang Xin-Liang. Application of full vectorial mode matching method to the calculation of eigenmodes of three-dimensional bent waveguide. Acta Physica Sinica, 2007, 56(4): 2268-2274. doi: 10.7498/aps.56.2268
    [18] Wang Long-Hai, Yu Jun, Wang Yun-Bo, Peng Gang, Liu Feng, Gao Jun-Xiong. A model of ferroelectric capacitors based on hysteresis loop. Acta Physica Sinica, 2005, 54(2): 949-954. doi: 10.7498/aps.54.949
    [19] Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [20] TU CHING-HUA. BENDING OF SANDWICH BEAMS. Acta Physica Sinica, 1955, 11(3): 259-286. doi: 10.7498/aps.11.259
Metrics
  • Abstract views:  14455
  • PDF Downloads:  259
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2019
  • Accepted Date:  30 July 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回
Baidu
map