搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用二元相位调制实现啁啾纠缠光子对关联时间的压缩

李百宏 王豆豆 庞华锋 张涛 解忧 高峰 董瑞芳 李永放 张首刚

引用本文:
Citation:

用二元相位调制实现啁啾纠缠光子对关联时间的压缩

李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚

Compression of correlation time of chirped biphotons by binary phase modulation

Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang
PDF
导出引用
  • 啁啾纠缠光子对具有超宽带的频谱特征,但由于同时产生了二次频率相位因子使其关联时间也被拓宽,限制了其在量子计量、量子光刻等领域的应用.通过类比透镜在空间对光场的相位变换原理,本文提出了一种通过在频域制作类透镜(菲涅耳波带透镜)来等效消除二次频率相位因子,从而压缩啁啾纠缠光子对关联时间的方法.这种类透镜是基于菲涅耳波带片思想,通过将啁啾纠缠光子对光谱划分成菲涅耳频率波带,并进行二元相位(0,)调制来实现.该方法可以在不损耗纠缠光信号的情况下极大地增强光子对的时间关联,同时又避免了相位补偿方法中压缩结果对色散介质长度的依赖和高阶色散影响的缺点.这些结果为产生超宽带、超窄时间关联的纠缠光子对提供了理论依据,在量子计量和量子光刻领域有潜在的应用.
    Chirped biphotons generated via spontaneous parametric down-conversion in chirped quasi-phase-matched nonlinear crystals have ultrabroadband frequency spectra. However, the presence of quadratic frequency phase factor restricts their applications in quantum metrology and quantum lithography due to simultaneously lengthening the correlation times of biphotons. The key point to improve the temporal correlation of chirped biphotons is how to compensate for or remove the quadratic frequency phase factor. Phase compensation methods have been demonstrated to solve this problem in earlier reports. But the compressed efficiencies of these methods are strongly dependent on the length of the utilized dispersive medium and decreased by the higher-order dispersion of the dispersive medium. In this paper, based on the phase transform of a lens for a light field in spatial domain, we theoretically propose a method of the equivalent removal of the quadratic phase by realizing a Fresnel-zone lens-like modulation on the biphotons spectrum in frequency domain, thereby compressing the correlation time of chirped biphotons to the Fourier-transform limited width. By analogy to the idea of Fresnel wave zone plate, this lens-like modulation can be realized by dividing the biphoton spectrum into Fresnel frequency zones and applying only binary spectral phase (0, ) sequentially to these zones. The theoretical results show that the correlation time width of chirped biphotons can be reduced, and the correlation signal intensity can be increased compared with the original one, by a factor about 100 and 30, respectively. The physical reason is that these Fresnel frequency zones under binary spectral phase modulation will lead to constructive interference at zero delay and destructive interference elsewhere. This method can significantly enhance biphoton time correlation without biphoton signal loss and avoids the limitations of phase compensation methods. Therefore, we can obtain biphotons with both ultra-broad bandwidth and ultra-short correlation times by using our proposed method. The attainable compression efficiency is constrained by the division resolution of the Fresnel frequency zones and the precision of applied binary phase modulations. It should be noted that a constraint condition about crystal length, chirp parameter and the number of frequency zones is summarized in designing the experimental parameters for the desired compression goal. Since binary spectral phase and 0 are easy to obtain and calibrate in practice, we thus believe that our proposed method is feasible to implement experimentally. Moreover, the proposed method can also be generalized to other fields relating to the quadratic phase factor, such as two-photon absorption, second-harmonic generation and chirped pulse compression.
      通信作者: 李百宏, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn ; 董瑞芳, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11504292,11504291,11604260,91336108,11174282,Y133ZK1101);中组部首批青年拔尖人才支持计划(组厅字[2013]33号);中国科学院前沿科学重点研究计划项目(批准号:QYZDB-SSW-SLH007);陕西省自然科学基础研究计划项目(批准号:2016JQ1036)和陕西省留学归国人员择优资助优秀类项目资助的课题.
      Corresponding author: Li Bai-Hong, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn ; Dong Rui-Fang, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11504292,11504291,11604260,91336108,11174282,Y133ZK1101),the Young Top-notch Talents Program of Organization Department of the CPC Central Committee,China (Grant No.[2013]33),CAS Frontier Science Key Research Project (Grant No.QYZDB-SSW-SLH007),the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2016JQ1036),and Research Foundation for the Excellent Returned Overseas Chinese Scholars of Shaanxi Province,China.
    [1]

    Carrasco S, Torres J P, Torner L, Sergienko A, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [2]

    Khan I A, Howell J C 2006 Phys. Rev. A 73 031801

    [3]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [4]

    Dauler E, Jaeger G, Muller A, Migdall A L, Sergienko A V 1999 J. Res. Natl. Inst. Stand. Technol. 104 1

    [5]

    Carrasco S, Nasr M B, Sergienko A V, Saleh B E, Teich M C, Torres J P, Torner L 2006 Opt. Lett. 31 253

    [6]

    O'Donnell K A, U'Ren A B 2007 Opt. Lett. 32 817

    [7]

    Hendrych M, Shi X J, Valencia A, Torres J P 2009 Phys. Rev. A 79 023817

    [8]

    Katamadze K G, Kulik S P 2011 JETP Lett. 112 20

    [9]

    Okano M, Okamoto R, Tanaka A, Subashchandran S, Takeuchi S 2012 Opt. Express 20 13977

    [10]

    Hum D S, Fejer M M 2007 C. R. Phys. 8 180

    [11]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [12]

    Nasr M B, Minaeva O, Goltsman G N, Sergienko A V, Saleh B E, Teich M C 2008 Opt. Express 16 15104

    [13]

    Fraine A, Minaeva O, Simon D S, Egorov R, Sergienko A V 2012 Opt. Lett. 37 1910

    [14]

    Antonosyan D A, Tamazyan A R, Kryuchkyan G Y 2012 J. Phys. B:At. Mol. Opt. Phys. 45 215502

    [15]

    Harris S E 2007 Phys. Rev. Lett. 98 063602

    [16]

    Sensarm S, Yin G Y, Harris S E 2010 Phys. Rev. Lett. 104 253602

    [17]

    Tanaka A, Okamoto R, Lim H H, Subashchandran S, Okano M, Zhang L B, Kang L, Chen J, Wu P H, Hirohata T, Kurimura S, Takeuchi S 2012 Opt. Express 20 25228

    [18]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G K, Meda A, Shumilkina O A 2009 Phys. Rev. Lett. 103 193602

    [19]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G Kh, Meda A, Shumilkina O A 2010 Phys. Rev. A 81 053828

    [20]

    Chekhova M V, Shumilkina O A 2009 JETP Lett. 90 172

    [21]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [22]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602

    [23]

    Gea-Banacloche J 1989 Phys. Rev. Lett. 62 1603

    [24]

    Georgiades N P, Polzik E S, Edamatsu K, Kimble H J, Parkins A S 1995 Phys. Rev. Lett. 75 3426

    [25]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655

    [26]

    Pe'er A, Dayan B, Friesem A A, Silberberg Y 2005 Phys. Rev. Lett. 94 073601

    [27]

    Weiner A M 2011 Opt. Commun. 284 3669

    [28]

    Zäh F, Halder M, Feurer T 2008 Opt. Express 16 16452

    [29]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M Opt. Lett. 38 4652

    [30]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2013 Phys. Rev. Lett. 111 193603

    [31]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Phys. Rev. Lett. 112 133602

    [32]

    Lukens J M, Odele O, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Opt. Express 22 9585

    [33]

    Hecht E 1989 Optics (2nd Ed.) (Reading, MA:Addison-Wesley) pp434-458

    [34]

    Broers B, Noordam L D, van Linden van den Heuvell H B 1992 Phys. Rev. A 46 2749

    [35]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press)

    [36]

    Chekhova M V 2002 JETP Lett. 75 225

    [37]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601

    [38]

    Li B H, Xu Y G, An L, Lin Q L, Zhu H F, Lin F K, Li Y F 2014 Opt. Lett. 39 2443

    [39]

    Li B H, Xu Y G, Zhu H F, Lin Q L, An L, Lin F K, Li Y F 2014 J. Opt. Soc. Am. B 31 2511

  • [1]

    Carrasco S, Torres J P, Torner L, Sergienko A, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [2]

    Khan I A, Howell J C 2006 Phys. Rev. A 73 031801

    [3]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [4]

    Dauler E, Jaeger G, Muller A, Migdall A L, Sergienko A V 1999 J. Res. Natl. Inst. Stand. Technol. 104 1

    [5]

    Carrasco S, Nasr M B, Sergienko A V, Saleh B E, Teich M C, Torres J P, Torner L 2006 Opt. Lett. 31 253

    [6]

    O'Donnell K A, U'Ren A B 2007 Opt. Lett. 32 817

    [7]

    Hendrych M, Shi X J, Valencia A, Torres J P 2009 Phys. Rev. A 79 023817

    [8]

    Katamadze K G, Kulik S P 2011 JETP Lett. 112 20

    [9]

    Okano M, Okamoto R, Tanaka A, Subashchandran S, Takeuchi S 2012 Opt. Express 20 13977

    [10]

    Hum D S, Fejer M M 2007 C. R. Phys. 8 180

    [11]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [12]

    Nasr M B, Minaeva O, Goltsman G N, Sergienko A V, Saleh B E, Teich M C 2008 Opt. Express 16 15104

    [13]

    Fraine A, Minaeva O, Simon D S, Egorov R, Sergienko A V 2012 Opt. Lett. 37 1910

    [14]

    Antonosyan D A, Tamazyan A R, Kryuchkyan G Y 2012 J. Phys. B:At. Mol. Opt. Phys. 45 215502

    [15]

    Harris S E 2007 Phys. Rev. Lett. 98 063602

    [16]

    Sensarm S, Yin G Y, Harris S E 2010 Phys. Rev. Lett. 104 253602

    [17]

    Tanaka A, Okamoto R, Lim H H, Subashchandran S, Okano M, Zhang L B, Kang L, Chen J, Wu P H, Hirohata T, Kurimura S, Takeuchi S 2012 Opt. Express 20 25228

    [18]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G K, Meda A, Shumilkina O A 2009 Phys. Rev. Lett. 103 193602

    [19]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G Kh, Meda A, Shumilkina O A 2010 Phys. Rev. A 81 053828

    [20]

    Chekhova M V, Shumilkina O A 2009 JETP Lett. 90 172

    [21]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [22]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602

    [23]

    Gea-Banacloche J 1989 Phys. Rev. Lett. 62 1603

    [24]

    Georgiades N P, Polzik E S, Edamatsu K, Kimble H J, Parkins A S 1995 Phys. Rev. Lett. 75 3426

    [25]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655

    [26]

    Pe'er A, Dayan B, Friesem A A, Silberberg Y 2005 Phys. Rev. Lett. 94 073601

    [27]

    Weiner A M 2011 Opt. Commun. 284 3669

    [28]

    Zäh F, Halder M, Feurer T 2008 Opt. Express 16 16452

    [29]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M Opt. Lett. 38 4652

    [30]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2013 Phys. Rev. Lett. 111 193603

    [31]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Phys. Rev. Lett. 112 133602

    [32]

    Lukens J M, Odele O, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Opt. Express 22 9585

    [33]

    Hecht E 1989 Optics (2nd Ed.) (Reading, MA:Addison-Wesley) pp434-458

    [34]

    Broers B, Noordam L D, van Linden van den Heuvell H B 1992 Phys. Rev. A 46 2749

    [35]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press)

    [36]

    Chekhova M V 2002 JETP Lett. 75 225

    [37]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601

    [38]

    Li B H, Xu Y G, An L, Lin Q L, Zhu H F, Lin F K, Li Y F 2014 Opt. Lett. 39 2443

    [39]

    Li B H, Xu Y G, Zhu H F, Lin Q L, An L, Lin F K, Li Y F 2014 J. Opt. Soc. Am. B 31 2511

  • [1] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长对量子关联光子对产生.  , 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] 李娟, 刘鹏, 项晓, 刘涛, 董瑞芳, 张首刚. 空间走离对量子光学频率梳压缩特性的影响.  , 2023, 72(8): 084206. doi: 10.7498/aps.72.20222343
    [3] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定.  , 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾.  , 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [5] 田艳, 黄丽, 罗懋康. 噪声交叉关联强度的时间周期调制对线性过阻尼系统的随机共振的影响.  , 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [6] 王堃, 崔亮, 张秀婷, 李小英. 脉冲抽运光啁啾对全光纤量子关联光子对纯度的影响.  , 2013, 62(16): 164205. doi: 10.7498/aps.62.164205
    [7] 杨华千, 廖晓峰, Kwok-Wo Wong, 张伟, 韦鹏程. 基于SPIHT的图像加密与压缩关联算法.  , 2012, 61(4): 040505. doi: 10.7498/aps.61.040505
    [8] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响.  , 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [9] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量.  , 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [10] 陈德彝, 王忠龙. 噪声间关联程度的时间周期调制对单模激光随机共振的影响.  , 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [11] 邹少存, 徐 伟, 靳艳飞. 具有时滞状态反馈的随机Van der Pol系统的动力学研究.  , 2008, 57(12): 7527-7534. doi: 10.7498/aps.57.7527
    [12] 马松山, 徐 慧, 李燕峰, 张鹏华. 一维二元非对角关联无序体系交流跳跃电导特性.  , 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [13] 马松山, 徐 慧, 刘小良, 王焕友. 一维二元非对角关联无序体系跳跃电导特性.  , 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [14] 王忠纯. Tavis-Cummings模型中原子运动时光场的非经典特性.  , 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [15] 夏光琼, 吴正茂, 陈海涛. 基于脉冲对的交叉相位调制脉冲压缩中离散效应的抑制.  , 2005, 54(3): 1167-1171. doi: 10.7498/aps.54.1167
    [16] 王继锁, 冯健, 刘堂昆, 詹明生. 一种新的奇偶非线性相干态及其量子统计性质.  , 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [17] 胡响明, 彭金生. 双模双光子关联发射激光的稳态特性及其量子噪声压缩特性.  , 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
    [18] 曹文华, 张有为, 刘颂豪, 郭旗, 徐文成. 光纤正常色散区基于脉冲对交叉相位调制的亮脉冲压缩.  , 1997, 46(5): 919-928. doi: 10.7498/aps.46.919
    [19] 许晶波, 刘宜昌, 高孝纯. 二次型含时间的谐振子系统的压缩态和压缩相干态.  , 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
    [20] 霍裕平. 关联函数的长时间渐近行为——波对弛豫过程的影响.  , 1980, 29(1): 73-92. doi: 10.7498/aps.29.73
计量
  • 文章访问数:  5936
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-16
  • 修回日期:  2016-11-24
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map