-
In this paper, we mainly introduce the preparation and physical properties of the heralded single-photon source, the development history and its applications in three typical quantum key distribution protocols, including BB84, measurement-device-independent and twin-field quantum key distribution protocols. Moreover, we make comparisons of the above quantum key distribution protocols between using heralded single-photon source and using weak coherent sources, and analyze their advantages and disadvantages. Besides, according to the characteristics of single-photon interference in twin-field quantum key distributions, the limitations of separately applying heralded single-photon sources to twin-field quantum key distributions are revealed, and possible solutions are discussed. Therefore, this work may provide valuable references and help for the practical implementation of quantum secure communication in the near future.
-
Keywords:
- quantum key distribution /
- heralded single photon source /
- weak coherent state light source /
- passive decoy state
[1] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
[3] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
Google Scholar
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
Google Scholar
[5] Scarani V, Acín A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901
Google Scholar
[6] Inoue K, Waks E, Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
Google Scholar
[7] Bruß D 1998 Phys. Rev. Lett. 81 3018
Google Scholar
[8] Brassard G, Lütkenhaus N, Mor T, Sanders BC 2000 Phys. Rev. Lett. 85 1330
Google Scholar
[9] Lütkenhaus N, Jahma M 2002 New J. Phys. 4 44
Google Scholar
[10] Makarov V, Hjelme D R 2005 J. Mod. Opt. 52 691
Google Scholar
[11] Qi B, Fung C H F, Lo H K, Ma X F 2007 Quantum Inf. Comput. 7 73
Google Scholar
[12] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333
Google Scholar
[13] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photonics 4 686
Google Scholar
[14] Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 1
Google Scholar
[15] Weier H, Krauss H, Rau M, Fürst M, Nauerth S, Weinfurter H 2011 New J. Phys. 13 073024
Google Scholar
[16] Wiechers C, Lydersen L, Wittmann C, Elser D, Skaar J, Marquardt Ch, Makarov V, Leuchs G 2011 New J. Phys. 13 013043
Google Scholar
[17] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
Google Scholar
[18] Wang X B 2005 Phys. Rev. Lett. 94 230503
Google Scholar
[19] Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504
Google Scholar
[20] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502
Google Scholar
[21] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
Google Scholar
[22] Silva T F, Vitoreti D, Xavier G B, do Amaral G C, Temporão G T, von derWeid J P 2013 Phys. Rev. A 88 052303
Google Scholar
[23] Liu Y, Chen T Y, Wang L J, Pan J W 2013 Phys. Rev. Lett. 111 130502
Google Scholar
[24] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W 2013 Phys. Rev. Lett. 111 130501
Google Scholar
[25] Pirandola S, Laurenza, Ottaviani C, Banchi L 2017 Nature Commun. 8 15043
Google Scholar
[26] Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400
Google Scholar
[27] Ma X, Zeng P, Zhou H 2018 Phys. Rev. X 8 031043
Google Scholar
[28] Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323
Google Scholar
[29] Cui C H, Zhen Y Q, Wang R, Chen W, Wang S, Guo G C 2019 Phys. Rev. Appl. 11 034053
Google Scholar
[30] Curty M, Azuma K, Lo H K 2019 Npj Quantum Inf. 5 1
Google Scholar
[31] Lin J, Lütkenhaus N 2018 Phys. Rev. A 98 042332
Google Scholar
[32] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046
Google Scholar
[33] Liu Y, Yu Z W, Zhang W, et al. 2019 Phys. Rev. Lett. 123 100505
Google Scholar
[34] Zhong X, Hu J, Curty M, Qian L, Lo H K 2019 Phys. Rev. Lett. 123 100506
Google Scholar
[35] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Shields A J 2021 Nat. Photon. 15 530
Google Scholar
[36] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Yuan-Fan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154
Google Scholar
[37] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
Google Scholar
[38] Zhang C H, Wang D, Zhou X Y, Wang S, Zhang L B, Yin Z Q, Chen W, Han Z H, Guo G C, Wang Q 2018 Opt. Express 26 25921
Google Scholar
[39] 朱峰, 王琴 2014 光学学报 6 0627002
Google Scholar
Zhu F, Wang Q 2014 Acta Opt. Sin. 6 0627002
Google Scholar
[40] Wang D 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[41] Zhang C H 2020 Ph. D. Dissertation (Nanjing: nanjing University of Posts and Telecommunications)
[42] Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309
Google Scholar
[43] Bock M, Lenhard A, Chunnilall C, Becher C 2016 Opt. Express 24 23992
Google Scholar
[44] Aboussouan P, Alibart O, Ostrowsky D B, Baldi P, Tanzilli S 2010 Phys. Rev. A 81 021801
Google Scholar
[45] Kaneda F, Garay-Palmett K, U’Ren A B, Kwiat P G 2016 Opt. Express 24 10733
Google Scholar
[46] Weston M M, Chrzanowski H M, Wollmann S, Boston A, Ho J, Shalm L K, Verma V B, Allman M S, Nam S W, Patel R B, Slussarenko S, Pryde G J 2016 Opt. Express 24 10869
Google Scholar
[47] Zhong H S, Li Y, Li W, et al. 2018 Phys. Rev. Lett. 121 250505
Google Scholar
[48] Sansa Perna A, Ortega E, Gräfe M, Steinlechner F 2022 Appl. Phys. Lett. 120 074001
Google Scholar
[49] Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 5 325
Google Scholar
[50] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
Google Scholar
[51] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
Google Scholar
[52] Wang Q, Zhang C H, Wang X B 2016 Phys. Rev. A 93 032312
Google Scholar
[53] Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326
Google Scholar
[54] Zhang C H, Luo S L, Guo G C, Wang Q 2015 Phys. Rev. A 92 022332
Google Scholar
[55] Wang Q, Wang X B 2013 Phys. Rev. A 88 052332
Google Scholar
[56] Zhang C H, Zhang C M, Guo G C, Wang Q 2018 Opt. Express 26 4219
Google Scholar
[57] Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324
Google Scholar
[58] Xu F, Xu H, Lo H K 2014 Phys. Rev. A 89 052333
Google Scholar
[59] Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 052325
Google Scholar
[60] Hu X L, Yu Z W, Wang X B 2018 Phys. Rev. A 98 032303
Google Scholar
[61] Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301
Google Scholar
[62] Panayi C, Razavi M, Ma X, Lütkenhaus N 2014 New J. Phys. 16 043005
Google Scholar
[63] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034
Google Scholar
[64] Xu H, Hu X L, Feng X L, Wang X B 2020 Opt. Lett. 45 4120
Google Scholar
-
表 1 WCS与HSPS光源光子数分布概率对比[41]
Table 1. Comparison of photon number distribution probabilities between WCS and HSPS[41].
光源 $ {\mathit{P}}_{0} $ $ {\mathit{P}}_{1} $ $ {\mathit{P}}_{\mathit{m}} $ $ \mathrm{W}\mathrm{C}\mathrm{S} $ $ 6.065\times 1{0}^{-1} $ $ 0.3033 $ $ 0.0902 $ $ \mathrm{H}\mathrm{S}\mathrm{P}\mathrm{S} $ $ 6.065\times 1{0}^{-7} $ $ 0.2274 $ $ 0.0853 $ 表 2 不同HSPS实现方案关键指标对比
Table 2. Comparison of core parameters of different HSPS schemes.
晶体
类型信号光中心谱线/nm 滤波片
半高宽/nm纯度/% 光源亮度 标记效率滤波
前/%/后/%参考文献 PPLN 1557 0.10 78.0 1.40×103 pairs·(s·μW)–1 39.9 / 64.0 Saarlandes2016 [43] 1536 0.25 99.0 1.60×103 pairs·(s·mW)–1 — Nice2010 [44] PPKTP 1590 0.00 90.0 1.10×104 pairs·(s·mW)–1 77.0 / 0 Illinois2016 [45] 1570 8.00 98.0 3.29×102 pairs·(s·μW)–1 52.0 / 0 Griffith2016 [46] BBO 1550 10.00 99.7 1.70×102 pairs·(s·mW)–1 91.0 / 94.0 USTC2018 [47] 532 24.00 — 9.50×103 pairs·(s·mW)–1 18.9 / 16.7 Fraunhofer2022 [48] 注: 晶体类型为自发参量下转换过程中使用的非线晶体; PPLN: periodically-poled potassium titanyl phosphate, 周期极化磷酸钛钾晶体; PPKTP: periodically-poled potassium titanyl phosphate, 周期极化磷酸钛钾晶体; BBO: β–barium-borate, 偏硼磷钡晶体. -
[1] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
[3] Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557
Google Scholar
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
Google Scholar
[5] Scarani V, Acín A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901
Google Scholar
[6] Inoue K, Waks E, Yamamoto Y 2002 Phys. Rev. Lett. 89 037902
Google Scholar
[7] Bruß D 1998 Phys. Rev. Lett. 81 3018
Google Scholar
[8] Brassard G, Lütkenhaus N, Mor T, Sanders BC 2000 Phys. Rev. Lett. 85 1330
Google Scholar
[9] Lütkenhaus N, Jahma M 2002 New J. Phys. 4 44
Google Scholar
[10] Makarov V, Hjelme D R 2005 J. Mod. Opt. 52 691
Google Scholar
[11] Qi B, Fung C H F, Lo H K, Ma X F 2007 Quantum Inf. Comput. 7 73
Google Scholar
[12] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333
Google Scholar
[13] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J, Makarov V 2010 Nat. Photonics 4 686
Google Scholar
[14] Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C, Makarov V 2011 Nat. Commun. 2 1
Google Scholar
[15] Weier H, Krauss H, Rau M, Fürst M, Nauerth S, Weinfurter H 2011 New J. Phys. 13 073024
Google Scholar
[16] Wiechers C, Lydersen L, Wittmann C, Elser D, Skaar J, Marquardt Ch, Makarov V, Leuchs G 2011 New J. Phys. 13 013043
Google Scholar
[17] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
Google Scholar
[18] Wang X B 2005 Phys. Rev. Lett. 94 230503
Google Scholar
[19] Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504
Google Scholar
[20] Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502
Google Scholar
[21] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503
Google Scholar
[22] Silva T F, Vitoreti D, Xavier G B, do Amaral G C, Temporão G T, von derWeid J P 2013 Phys. Rev. A 88 052303
Google Scholar
[23] Liu Y, Chen T Y, Wang L J, Pan J W 2013 Phys. Rev. Lett. 111 130502
Google Scholar
[24] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W 2013 Phys. Rev. Lett. 111 130501
Google Scholar
[25] Pirandola S, Laurenza, Ottaviani C, Banchi L 2017 Nature Commun. 8 15043
Google Scholar
[26] Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400
Google Scholar
[27] Ma X, Zeng P, Zhou H 2018 Phys. Rev. X 8 031043
Google Scholar
[28] Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323
Google Scholar
[29] Cui C H, Zhen Y Q, Wang R, Chen W, Wang S, Guo G C 2019 Phys. Rev. Appl. 11 034053
Google Scholar
[30] Curty M, Azuma K, Lo H K 2019 Npj Quantum Inf. 5 1
Google Scholar
[31] Lin J, Lütkenhaus N 2018 Phys. Rev. A 98 042332
Google Scholar
[32] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046
Google Scholar
[33] Liu Y, Yu Z W, Zhang W, et al. 2019 Phys. Rev. Lett. 123 100505
Google Scholar
[34] Zhong X, Hu J, Curty M, Qian L, Lo H K 2019 Phys. Rev. Lett. 123 100506
Google Scholar
[35] Pittaluga M, Minder M, Lucamarini M, Sanzaro M, Shields A J 2021 Nat. Photon. 15 530
Google Scholar
[36] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Yuan-Fan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154
Google Scholar
[37] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A 2008 Phys. Rev. Lett. 100 090501
Google Scholar
[38] Zhang C H, Wang D, Zhou X Y, Wang S, Zhang L B, Yin Z Q, Chen W, Han Z H, Guo G C, Wang Q 2018 Opt. Express 26 25921
Google Scholar
[39] 朱峰, 王琴 2014 光学学报 6 0627002
Google Scholar
Zhu F, Wang Q 2014 Acta Opt. Sin. 6 0627002
Google Scholar
[40] Wang D 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[41] Zhang C H 2020 Ph. D. Dissertation (Nanjing: nanjing University of Posts and Telecommunications)
[42] Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309
Google Scholar
[43] Bock M, Lenhard A, Chunnilall C, Becher C 2016 Opt. Express 24 23992
Google Scholar
[44] Aboussouan P, Alibart O, Ostrowsky D B, Baldi P, Tanzilli S 2010 Phys. Rev. A 81 021801
Google Scholar
[45] Kaneda F, Garay-Palmett K, U’Ren A B, Kwiat P G 2016 Opt. Express 24 10733
Google Scholar
[46] Weston M M, Chrzanowski H M, Wollmann S, Boston A, Ho J, Shalm L K, Verma V B, Allman M S, Nam S W, Patel R B, Slussarenko S, Pryde G J 2016 Opt. Express 24 10869
Google Scholar
[47] Zhong H S, Li Y, Li W, et al. 2018 Phys. Rev. Lett. 121 250505
Google Scholar
[48] Sansa Perna A, Ortega E, Gräfe M, Steinlechner F 2022 Appl. Phys. Lett. 120 074001
Google Scholar
[49] Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 5 325
Google Scholar
[50] Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312
Google Scholar
[51] Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503
Google Scholar
[52] Wang Q, Zhang C H, Wang X B 2016 Phys. Rev. A 93 032312
Google Scholar
[53] Ma X, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326
Google Scholar
[54] Zhang C H, Luo S L, Guo G C, Wang Q 2015 Phys. Rev. A 92 022332
Google Scholar
[55] Wang Q, Wang X B 2013 Phys. Rev. A 88 052332
Google Scholar
[56] Zhang C H, Zhang C M, Guo G C, Wang Q 2018 Opt. Express 26 4219
Google Scholar
[57] Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324
Google Scholar
[58] Xu F, Xu H, Lo H K 2014 Phys. Rev. A 89 052333
Google Scholar
[59] Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 052325
Google Scholar
[60] Hu X L, Yu Z W, Wang X B 2018 Phys. Rev. A 98 032303
Google Scholar
[61] Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301
Google Scholar
[62] Panayi C, Razavi M, Ma X, Lütkenhaus N 2014 New J. Phys. 16 043005
Google Scholar
[63] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034
Google Scholar
[64] Xu H, Hu X L, Feng X L, Wang X B 2020 Opt. Lett. 45 4120
Google Scholar
计量
- 文章访问数: 6569
- PDF下载量: 172
- 被引次数: 0