搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠缠光子对的级联Hong-Ou-Mandel干涉研究及其在多时延参数测量中的应用

翟艺伟 董瑞芳 权润爱 项晓 刘涛 张首刚

引用本文:
Citation:

纠缠光子对的级联Hong-Ou-Mandel干涉研究及其在多时延参数测量中的应用

翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚

Cascaded Hong-Ou-Mandel interference of entangled photon pairs and its application in multiple delay parameters measurement

Zhai Yi-Wei, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang
PDF
HTML
导出引用
  • 基于纠缠光子对的Hong-Ou-Mandel (HOM)干涉仪在量子精密测量等领域有着重要应用. 本文提出了利用一个级联HOM干涉仪实现多个独立时延参数的同时测量方案. 通过理论分析得出纠缠光子对经过多个50∶50分束器级联传输后, 其HOM二阶量子干涉图谱中凹陷位置与各级传输路径间独立时延参数的对应关系, 因此可通过记录各个凹陷位置的时延值实现多个独立时延参数的同时测量. 在此基础上搭建了基于频率一致纠缠光子对的二级级联HOM干涉测量装置, 通过实验上得到的具有两个对称凹陷的二阶量子干涉图谱, 实现了两级传输路径间两个独立时延参数$ {\tau }_{1} $$ {\tau }_{2} $的同时测量, 并分别获得了109 fs和98 fs的测量精度. 上述研究结果为HOM干涉仪在多参量量子精密测量系统中的扩展应用奠定基础.
    The Hong-Ou-Mandel (HOM) interferometer using entangled photon source possesses important applications in quantum precision measurement and relevant areas. In this paper, a simultaneous measurement scheme of multiple independent delay parameters based on a cascaded HOM interferometer is proposed. The cascaded HOM interferometer is composed of $ n $ concatenated 50∶50 beam splitters and independent delay parameters $ {\tau }_{1} $, $ {\tau }_{2} $, ···, $ {\tau }_{n} $. The numbers $ n=1, 2\;\mathrm{a}\mathrm{n}\mathrm{d}\;3 $ refer to the standard HOM interferometer, the second-cascaded HOM interferometer, and the third-cascaded HOM interferometer, respectively. Through the theoretical study of the cascaded HOM interference effect based on frequency entangled photon pairs, it can be concluded that there is a corresponding relationship between the dip position and the independent delay parameter in the second-order quantum interferogram. In the standard HOM interferometer, there is a dip in the second-order quantum interferogram, which can realize the measurement of delay parameter $ {\tau }_{1} $. In the second-cascaded HOM interferometer, there are two symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of two independent delay parameters $ {\tau }_{1} $ and $ {\tau }_{2} $. By analogy, in the third-cascaded HOM interferometer, there are six symmetrical dips in the second-order quantum interferogram, which can realize the simultaneous measurement of three independent delay parameters $ {\tau }_{1} $, $ {\tau }_{2} $ and $ {\tau }_{3} $. Therefore, multiple independent delay parameters can be measured simultaneously based on a cascaded HOM interferometer. In the experiment, the second-cascaded HOM interferometer based on frequency entangled photon source is built. The second-order quantum interferogram of the second-cascaded HOM interferometer is obtained by the coincidence measurement device. Two independent delay parameters $ {\tau }_{1} $ and $ {\tau }_{2} $ are measured simultaneously by recording the positions of two symmetrical dips, which are in good agreement with the theoretical results. At an averaging time of 3000 s, the measurement accuracy of two delay parameters $ {\tau }_{1} $ and $ {\tau }_{2} $ can reach 109 and 98 fs, respectively. These results lay a foundation for extending the applications of HOM interferometer in multi-parameter quantum systems.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn ; 张首刚, szhang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12033007, 61875205, 61801458, 91836301)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SW-SLH007)、中国科学院战略性先导科技专项C类项目(批准号: XDC07020200)、中国科学院“西部青年学者”项目(批准号: XAB2019B17, XAB2019B15)、广东省重点研发项目(批准号: 2018B030325001)和中国科学院重点项目(批准号: ZDRW-KT-2019-1-0103)资助的课题
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn ; Zhang Shou-Gang, szhang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholar” Project of CAS (Grant Nos. XAB2019B17, XAB2019B15), the Key R&D Program of Guangdong Province, China (Grant No. 2018B030325001), and the Chinese Academy of Sciences Key Project (Grant No. ZDRW-KT-2019-1-0103)
    [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    Ou Z Y, Hong C K, Mandel L 1987 Opt. Commun. 63 118Google Scholar

    [3]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726Google Scholar

    [4]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [5]

    Carrasco S, Torres J P, Toener L 2004 Opt. Lett. 29 20Google Scholar

    [6]

    Quan R A, Zhai Y W, Wang M M, Hou F Y, Wang S F, Xiang X, Liu T, Zhang S G, Dong R F 2016 Sci. Rep. 6 30453Google Scholar

    [7]

    Ma X S, Zotter S, Kofler J, Ursin R, Jennewein T, Brukner C, Zeilinger A 2012 Nat. Phys. 8 6Google Scholar

    [8]

    Quan R A, Dong R F, Zhai Y W, Hou F Y, Xiang X, Zhou H, Lü C L, Wang Z, You L X, Liu T, Zhang S G 2019 Opt. Lett. 44 3Google Scholar

    [9]

    Schwarz L, van Enk S J 2011 Phys. Rev. Lett. 106 180501Google Scholar

    [10]

    Jozsa R, Abrams D S, Dowling J P, Williams C P 2000 Phys. Rev. Lett. 85 2010Google Scholar

    [11]

    李银海, 许昭怀, 王双, 许立新, 周志远, 史保森 2017 68 120302Google Scholar

    Li Y H, Xu Z H, Wang S, Xu L X, Zhou Z Y, Shi B S 2017 Acta Phys. Sin. 68 120302Google Scholar

    [12]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar

    [13]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902Google Scholar

    [14]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar

    [15]

    Grice W P, Walmsley I A 1997 Phys. Rev. A 56 1627Google Scholar

    [16]

    Kaltenbaek R, Blauensteiner B, Żukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502Google Scholar

    [17]

    Branning D, Migdall A L, Sergienko A V 2000 Phys. Rev. A 62 063808Google Scholar

    [18]

    Dauler E, Jaeger G, Muller A, Migdall A 1999 J. Res. Natl. Inst. Stand. Technol. 104 1Google Scholar

    [19]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 5Google Scholar

    [20]

    Zhai Y W, Dong R F, Li B H, Quan R A, Wang M M, Hou F Y, Liu T, Zhang S G 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125502Google Scholar

    [21]

    Yang Y, Xu L P, Giovannetti V 2019 Sci. Rep. 9 1Google Scholar

    [22]

    Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar

    [23]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813Google Scholar

    [24]

    Quan R A, Wang M M, Hou F Y, Tai Z Y, Dong R F 2015 Appl. Phys. B 118 431Google Scholar

  • 图 1  基于频率纠缠光源的多级级联HOM干涉仪的原理框图

    Fig. 1.  Schematic of multi-cascaded HOM interferometer based on frequency entangled source.

    图 2  基于频率纠缠光子对的多级级联HOM干涉仪的二阶量子干涉图谱 (a) 标准HOM干涉仪; (b) 二级级联HOM干涉仪; (c) 三级级联HOM干涉仪

    Fig. 2.  The second-order quantum interferograms of multi-cascaded HOM interferometer based on frequency entangled photon pairs: (a) HOM interferometer; (b) the second-cascaded HOM interferometer; (c) the third-cascaded HOM interferometer.

    图 3  基于频率纠缠光子对的二级级联HOM干涉仪实验装置图(HWP, 半波片; PPKTP, 周期极化磷酸氧钛钾晶体; DM, 分色镜; Lens, 透镜组; FC, 光纤耦合器; FPBS, 光纤偏振分束器; 50∶50 FBS, 50∶50光纤分束器; FPC, 光纤偏振控制器; MDL, 电动可调光学延迟线; ODL, 手动可调光学延迟线; SNSPD, 超导纳米线单光子探测器)

    Fig. 3.  Experimental setup of the second-cascaded HOM interferometer based on frequency entangled photon pairs. HWP, half-wave plate; PPKTP, periodically poled KTP; DM, dichroic mirror; Lens, a set of lenses; FC, fiber connection; FPBS, fiber-based polarization beam splitter; 50∶50 FBS, 50∶50 fiber beam splitter; FPC, fiber polarization controller; MDL, motorized delay line; ODL, optical delay line; SNSPD, super-conductor nanowire single photon detector.

    图 4  频率一致纠缠光子对的二阶量子干涉图谱实验结果 (a) 标准HOM干涉仪; (b) 二级级联HOM干涉仪

    Fig. 4.  Experimental results of second-order quantum interferograms based on frequency entangled photon pairs: (a) HOM interferometer; (b) the second-cascaded HOM interferometer.

    图 5  基于二级级联HOM干涉仪的两个独立时延参数$ {\tau }_{1} $$ {\mathrm{\tau }}_{2} $的测量精度

    Fig. 5.  Measurement accuracy of delay $ {\tau }_{1} $ and $ {\tau }_{2} $ based on the second-cascaded HOMI.

    图 6  时延参数$ {\tau }_{2} $的测量值与环境温度及测量时间的变化关系

    Fig. 6.  Delay movements $ {\tau }_{2} $ and the temperature variations versus the measuring time.

    图 SA1  纠缠光子对的干涉费曼图 (a) 标准HOM干涉仪; (b) 二级级联HOM干涉仪; (c) 三级级联HOM干涉仪

    Fig. SA1.  The Feynman-like diagrams of entangled photon pairs: (a) HOM interferometer; (b) the second-cascaded HOM interferometer; (c) the third-cascaded HOM interferometer.

    Baidu
  • [1]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044Google Scholar

    [2]

    Ou Z Y, Hong C K, Mandel L 1987 Opt. Commun. 63 118Google Scholar

    [3]

    Nagata T, Okamoto R, O’Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726Google Scholar

    [4]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Zukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [5]

    Carrasco S, Torres J P, Toener L 2004 Opt. Lett. 29 20Google Scholar

    [6]

    Quan R A, Zhai Y W, Wang M M, Hou F Y, Wang S F, Xiang X, Liu T, Zhang S G, Dong R F 2016 Sci. Rep. 6 30453Google Scholar

    [7]

    Ma X S, Zotter S, Kofler J, Ursin R, Jennewein T, Brukner C, Zeilinger A 2012 Nat. Phys. 8 6Google Scholar

    [8]

    Quan R A, Dong R F, Zhai Y W, Hou F Y, Xiang X, Zhou H, Lü C L, Wang Z, You L X, Liu T, Zhang S G 2019 Opt. Lett. 44 3Google Scholar

    [9]

    Schwarz L, van Enk S J 2011 Phys. Rev. Lett. 106 180501Google Scholar

    [10]

    Jozsa R, Abrams D S, Dowling J P, Williams C P 2000 Phys. Rev. Lett. 85 2010Google Scholar

    [11]

    李银海, 许昭怀, 王双, 许立新, 周志远, 史保森 2017 68 120302Google Scholar

    Li Y H, Xu Z H, Wang S, Xu L X, Zhou Z Y, Shi B S 2017 Acta Phys. Sin. 68 120302Google Scholar

    [12]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417Google Scholar

    [13]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902Google Scholar

    [14]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241Google Scholar

    [15]

    Grice W P, Walmsley I A 1997 Phys. Rev. A 56 1627Google Scholar

    [16]

    Kaltenbaek R, Blauensteiner B, Żukowski M, Aspelmeyer M, Zeilinger A 2006 Phys. Rev. Lett. 96 240502Google Scholar

    [17]

    Branning D, Migdall A L, Sergienko A V 2000 Phys. Rev. A 62 063808Google Scholar

    [18]

    Dauler E, Jaeger G, Muller A, Migdall A 1999 J. Res. Natl. Inst. Stand. Technol. 104 1Google Scholar

    [19]

    Lyons A, Knee G C, Bolduc E, Roger T, Leach J, Gauger E M, Faccio D 2018 Sci. Adv. 4 5Google Scholar

    [20]

    Zhai Y W, Dong R F, Li B H, Quan R A, Wang M M, Hou F Y, Liu T, Zhang S G 2017 J. Phys. B: At. Mol. Opt. Phys. 50 125502Google Scholar

    [21]

    Yang Y, Xu L P, Giovannetti V 2019 Sci. Rep. 9 1Google Scholar

    [22]

    Yang Y, Xu L P, Giovannetti V 2019 Phys. Rev. A 100 063810Google Scholar

    [23]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813Google Scholar

    [24]

    Quan R A, Wang M M, Hou F Y, Tai Z Y, Dong R F 2015 Appl. Phys. B 118 431Google Scholar

  • [1] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用.  , 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [2] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展.  , 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] 田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强. 强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉.  , 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [4] 王佳, 刘荣明, 王佳超, 吴慎将. 基于径向剪切干涉仪的三维位移测量技术.  , 2021, 70(7): 070701. doi: 10.7498/aps.70.20201451
    [5] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [6] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用.  , 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [7] 杨宏恩, 韦联福. 宣布式单光子源宣布效率的宣布测量基相关性.  , 2019, 68(23): 234202. doi: 10.7498/aps.68.20190532
    [8] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响.  , 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [9] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪.  , 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [10] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉.  , 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [11] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法.  , 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [12] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量.  , 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [13] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器.  , 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [14] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计.  , 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [15] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [16] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制.  , 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [17] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响.  , 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [18] 吴 光, 周春源, 曾和平. 光纤Sagnac干涉仪中单光子干涉及路由控制.  , 2004, 53(3): 698-702. doi: 10.7498/aps.53.698
    [19] 柴路, 何铁英, 杨胜杰, 王清月, 张志刚. 光谱位相干涉仪参数的优化选取.  , 2004, 53(1): 114-118. doi: 10.7498/aps.53.114
    [20] 倪育才, 王邦益. 用改进的瑞利干涉仪精确测量空气折射率.  , 1977, 26(1): 90-92. doi: 10.7498/aps.26.90
计量
  • 文章访问数:  5745
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-02-02
  • 上网日期:  2021-06-12
  • 刊出日期:  2021-06-20

/

返回文章
返回
Baidu
map