Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term

He Ying-Qiu Ding Dong Peng Tao Yan Feng-Li Gao Ting

Citation:

Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term

He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nowadays,the generation of multiphoton entangled states is almost realized by combining the coupled entangled photons emitted from spontaneous parametric down-conversion (SPDC) with the first-order term.In this case,one may focus mainly on the first-order term,and then avoid multipair emission events by restricting experimental parameters.On the other hand,for the higher-order terms in SPDC source,these emitted entangled photons have interesting features.For example,they are entangled maximally not only in photon number for the spatial modes,but also in polarization degree of freedom.In general,two photons,which are entangled in two or more degrees of freedom,are called hyperentangled pair of photons or hyperentangled state.We present a scheme to generate the four-photon hyperentangled state based on four indistinguishable photons emitted from SPDC source with the second-order term.Consider two SPDC sources with equal probability of emission of photons in respective spatial modes.With the passive linear optical devices,i.e., beam splitters,half wave plates,polarizing beam splitters,etc.,under the condition of registering a specified four-photon coincidence,we can obtain the four-photon hyperentangled state in which the photons are entangled in both polarization and spatial-mode degrees of freedom.Here,of course,for an arbitrary fourfold coincidence detection,one obtains a canonical four-photon Greenberger-Horne-Zeilinger (GHZ) state.Then we show the results of fourfold coincidence detections and the corresponding probabilities for the four-photon GHZ states,where the generation of the four-photon hyperentangled state is included as long as we are not to distinguish the two detectors located at the same locations. As a result,our scheme has two notable features.When we only consider the second-order emission,since it is not needed for us to distinguish between the two SPDC sources,the present scheme is simple and feasible.Also,based on the postselection with fourfold coincidence detection,our scheme is suitable for the normal first-order emission where we restrict the four photons emitted from the same source.In this sense,our scheme is efficient.In a word,we describe a method to generate the four-photon hyperentangled state with the second-order emission in SPDC source,which may contribute to the exploration of multipair entanglement with higher-order emissions from the SPDC source.
      Corresponding author: Ding Dong, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn ; Yan Feng-Li, dingdong@ncist.edu.cn;flyan@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475054, 11371005, 11547169), the Hebei Natural Science Foundation of China (Grant Nos. A2016205145, A2018205125), the Foundation for High-Level Talents of Chengde Medical University, China (Grant No. 201701), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. 3142017069, 3142015044), and the Research Project of Science and Technology in Higher Education of Hebei Province of China (Grant No. Z2015188).
    [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Burnham D C, Weinberg D L 1970 Phys. Rev. Lett. 25 84

    [4]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [5]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337

    [6]

    Kok P, Braunstein S L 2000 Phys. Rev. A 61 042304

    [7]

    Simon C, Weihs G, Zeilinger A 2000 Phys. Rev. Lett. 84 2993

    [8]

    Wieczorek W, Schmid C, Kiesel N, Pohlner R, Ghne O, Weinfurter H 2008 Phys. Rev. Lett. 101 010503

    [9]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photon. 6 225

    [10]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [11]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. Lett. 83 959

    [12]

    Lamas-Linares A, Howell J, Bouwmeester D 2001 Nature 412 887

    [13]

    Simon C, Bouwmeester D 2003 Phys. Rev. Lett. 91 053601

    [14]

    de Riedmatten H, Scarani V, Marcikic I, Acín A, Tittel W, Zbinden H, Gisin N 2004 J. Mod. Opt. 51 1637

    [15]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [16]

    Ding D, He Y Q, Yan F L, Gao T 2017 arXiv:1705.00392[quant-ph]

    [17]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [18]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501

    [19]

    Vallone G, Ceccarelli R, de Martini F, Mataloni P 2009 Phys. Rev. A 79 030301

    [20]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [21]

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese) [丁东, 何英秋, 闫凤利, 高亭 2015 64 160301]

    [22]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [23]

    Walborn S P, Pádua S, Monken C H 2003 Phys. Rev. A 68 042313

    [24]

    Wei T C, Barreiro J T, Kwiat P G 2007 Phys. Rev. A 75 060305

    [25]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [26]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [27]

    Li X H, Ghose S 2016 Phys. Rev. A 93 022302

    [28]

    Xia Y, Chen Q Q, Song J, Song H S 2012 J. Opt. Soc. Am. B 29 1029

    [29]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [30]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [31]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501

    [32]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [33]

    Du F F, Li T, Long G L 2016 Ann. Phys. 375 105

    [34]

    Liu H J, Xia Y, Song J 2016 Quantum Inf. Process. 15 2033

    [35]

    Ren B C, Wang H, Alzahrani F, Hobiny A, Deng F G 2017 Ann. Phys. 385 86

    [36]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [37]

    Li T, Long G L 2016 Phys. Rev. A 94 022343

    [38]

    Wei H R, Deng F G, Long G L 2016 Opt. Express 24 18619

    [39]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [40]

    Sheng Y B, Zhou L 2015 Sci. Rep. 5 7815

    [41]

    Jiang Y X, Guo P L, Gao C Y, Wang H B, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120312

    [42]

    Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120313

    [43]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [44]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [45]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [46]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [47]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [48]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [49]

    He Y Q, Ding D, Yan F L, Gao T 2015 Opt. Express 23 21671

    [50]

    Zhou L, Sheng Y B 2015 Phys. Rev. A 92 042314

    [51]

    Sheng Y B, Pan J, Guo R, Zhou L, Wang L 2015 Sci. China: Phys. Mech. Astron. 58 060301

    [52]

    He Y Q, Ding D, Yan F L, Gao T 2017 Sci. Rep. 7 15356

  • [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żkowski M 2012 Rev. Mod. Phys. 84 777

    [3]

    Burnham D C, Weinberg D L 1970 Phys. Rev. Lett. 25 84

    [4]

    Kiess T E, Shih Y H, Sergienko A V, Alley C O 1993 Phys. Rev. Lett. 71 3893

    [5]

    Kwiat P G, Mattle K, Weinfurter H, Zeilinger A 1995 Phys. Rev. Lett. 75 4337

    [6]

    Kok P, Braunstein S L 2000 Phys. Rev. A 61 042304

    [7]

    Simon C, Weihs G, Zeilinger A 2000 Phys. Rev. Lett. 84 2993

    [8]

    Wieczorek W, Schmid C, Kiesel N, Pohlner R, Ghne O, Weinfurter H 2008 Phys. Rev. Lett. 101 010503

    [9]

    Yao X C, Wang T X, Xu P, Lu H, Pan G S, Bao X H, Peng C Z, Lu C Y, Chen Y A, Pan J W 2012 Nat. Photon. 6 225

    [10]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502

    [11]

    Ou Z Y, Rhee J K, Wang L J 1999 Phys. Rev. Lett. 83 959

    [12]

    Lamas-Linares A, Howell J, Bouwmeester D 2001 Nature 412 887

    [13]

    Simon C, Bouwmeester D 2003 Phys. Rev. Lett. 91 053601

    [14]

    de Riedmatten H, Scarani V, Marcikic I, Acín A, Tittel W, Zbinden H, Gisin N 2004 J. Mod. Opt. 51 1637

    [15]

    Nagata T, Okamoto R, O'Brien J L, Sasaki K, Takeuchi S 2007 Science 316 726

    [16]

    Ding D, He Y Q, Yan F L, Gao T 2017 arXiv:1705.00392[quant-ph]

    [17]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [18]

    Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501

    [19]

    Vallone G, Ceccarelli R, de Martini F, Mataloni P 2009 Phys. Rev. A 79 030301

    [20]

    Du K, Qiao C F 2012 J. Mod. Opt. 59 611

    [21]

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese) [丁东, 何英秋, 闫凤利, 高亭 2015 64 160301]

    [22]

    Deng F G, Ren B C, Li X H 2017 Sci. Bull. 62 46

    [23]

    Walborn S P, Pádua S, Monken C H 2003 Phys. Rev. A 68 042313

    [24]

    Wei T C, Barreiro J T, Kwiat P G 2007 Phys. Rev. A 75 060305

    [25]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [26]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [27]

    Li X H, Ghose S 2016 Phys. Rev. A 93 022302

    [28]

    Xia Y, Chen Q Q, Song J, Song H S 2012 J. Opt. Soc. Am. B 29 1029

    [29]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [30]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [31]

    He Y Q, Ding D, Yan F L, Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501

    [32]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [33]

    Du F F, Li T, Long G L 2016 Ann. Phys. 375 105

    [34]

    Liu H J, Xia Y, Song J 2016 Quantum Inf. Process. 15 2033

    [35]

    Ren B C, Wang H, Alzahrani F, Hobiny A, Deng F G 2017 Ann. Phys. 385 86

    [36]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [37]

    Li T, Long G L 2016 Phys. Rev. A 94 022343

    [38]

    Wei H R, Deng F G, Long G L 2016 Opt. Express 24 18619

    [39]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [40]

    Sheng Y B, Zhou L 2015 Sci. Rep. 5 7815

    [41]

    Jiang Y X, Guo P L, Gao C Y, Wang H B, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120312

    [42]

    Wu F Z, Yang G J, Wang H B, Xiong J, Alzahrani F, Hobiny A, Deng F G 2017 Sci. China: Phys. Mech. Astron. 60 120313

    [43]

    Nemoto K, Munro W J 2004 Phys. Rev. Lett. 93 250502

    [44]

    Munro W J, Nemoto K, Beausoleil R G, Spiller T P 2005 Phys. Rev. A 71 033819

    [45]

    Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J, Spiller T P 2005 Phys. Rev. A 71 060302

    [46]

    Lin Q, He B, Bergou J A, Ren Y H 2009 Phys. Rev. A 80 042311

    [47]

    Ding D, Yan F L 2013 Phys. Lett. A 377 1088

    [48]

    Ding D, Yan F L, Gao T 2014 Sci. China: Phys. Mech. Astron. 57 2098

    [49]

    He Y Q, Ding D, Yan F L, Gao T 2015 Opt. Express 23 21671

    [50]

    Zhou L, Sheng Y B 2015 Phys. Rev. A 92 042314

    [51]

    Sheng Y B, Pan J, Guo R, Zhou L, Wang L 2015 Sci. China: Phys. Mech. Astron. 58 060301

    [52]

    He Y Q, Ding D, Yan F L, Gao T 2017 Sci. Rep. 7 15356

  • [1] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] Lai Hong. Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states. Acta Physica Sinica, 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [3] Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement. Acta Physica Sinica, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [4] Liu Kui, Ma Long, Su Bi-Da, Li Jia-Ming, Sun Heng-Xin, Gao Jiang-Rui. Generation of continuous variable frequency comb entanglement based on nondegenerate optical parametric amplifier. Acta Physica Sinica, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] Lu Bo, Han Cheng-Yin, Zhuang Min, Ke Yong-Guan, Huang Jia-Hao, Lee Chao-Hong. Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble. Acta Physica Sinica, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [6] Zong Xiao-Lan, Yang Ming. Scheme for protecting multipartite quantum entanglement. Acta Physica Sinica, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [7] Liu Yan, Li Jian-Jun, Gao Dong-Yang, Zhai Wen-Chao, Hu You-Bo, Guo Yuan-Yuan, Xia Mao-Peng, Zheng Xiao-Bing. Research on the time-correlation characterisrtic of correlated photon circles generated by the type-I spontaneous parametric down-conversion. Acta Physica Sinica, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [8] Ren Bao-Cang, Deng Fu-Guo. Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] Ding Dong, He Ying-Qiu, Yan Feng-Li, Gao Ting. Generation of six-photon hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [10] Hu Yao-Hua. Entropy exchange and entanglement in the multi-photon J-C model of a moving atom. Acta Physica Sinica, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [11] Xie Shuang-Yuan, Hu Xiang. Entanglement between a two-level atom and spontaneous emission field in anisotropic photonic crystal. Acta Physica Sinica, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [12] Lin Qing. Nearly-deterministic generation of spatial entangled qudits with weak cross-Kerr nonlinearity. Acta Physica Sinica, 2010, 59(5): 2976-2981. doi: 10.7498/aps.59.2976
    [13] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [14] Liang Hua-Qiu, Liu Jin-Ming. Remote state preparation with bipartite entangled states in noisy environments. Acta Physica Sinica, 2009, 58(6): 3692-3698. doi: 10.7498/aps.58.3692
    [15] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [16] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] Zhang Ying-Jie, Zhou Yuan, Xia Yun-Jie. The entanglement character of two entangled atoms in multiphoton Tavis-Cummings model. Acta Physica Sinica, 2008, 57(1): 21-27. doi: 10.7498/aps.57.21
    [18] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [19] Tao Meng-Xian, Lu Hong, She Wei-Long. . Acta Physica Sinica, 2002, 51(9): 1996-2001. doi: 10.7498/aps.51.1996
    [20] Sun Li-Qun, Zhang Yan-Peng, Liu Ya-Fang, Tang Tian-Tong, Yang Zhao-Jin, Xiang Shi-Ming. . Acta Physica Sinica, 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
Metrics
  • Abstract views:  7591
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2017
  • Accepted Date:  18 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回
Baidu
map