-
金属卤化物钙钛矿发光器件具有可溶液加工、高发光效率和良好色纯度等诸多优良特性, 受到了广泛的关注, 但蓝色钙钛矿发光器件发光效率和光谱稳定性等方面的问题限制了钙钛矿材料在照明和显示领域的进一步发展. 本工作研究硫氰酸铵添加剂对准二维混合卤化物钙钛矿薄膜形貌、结晶度、光物理和电致发光特性的影响. 结果表明硫氰酸铵能有效钝化准二维混合卤化物钙钛矿薄膜的缺陷, 提高结晶度, 调节相分布, 从而改善其电荷传输特性和发光效率. 硫氰酸铵浓度为20%的准二维钙钛矿发光二极管的发光峰值波长位于486 nm处, 器件的最大外量子效率为5.83%, 最大亮度为1258 cd/m2, 分别比未添加硫氰酸铵的器件提升了6.7倍和3.6倍, 同时器件发光光谱稳定性和驱动稳定性也得到了明显的提升. 本研究为提高蓝色准二维混合卤化物钙钛矿发光二极管的特性提供了一种简单有效的方法.
-
关键词:
- 准二维混合卤化物钙钛矿 /
- 蓝色钙钛矿发光二极管 /
- 硫氰酸铵 /
- 缺陷钝化
Metal halide perovskite light-emitting diodes have attracted much attention due to their excellent characteristics such as low-cost solution-processing, high luminous efficiency and excellent color purity. However, low luminous efficiency and spectrum stability of blue perovskite light-emitting device restrict the further development of perovskite materials in the field of displays and lighting. Here in this work, we study the effects of ammonium thiocyanate (NH4SCN) addition on the morphology, crystal structure, photo-physics, charge transport and electroluminescence properties of quasi-two-dimensional mixed-halide perovskite films by measuring scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectrum, steady-state photoluminescence (PL), and transient PL and analyzing the current density–voltage characteristics of hole-dominated device and current density-voltage-luminance plots of light-emitting device. The results indicate that ammonium thiocyanate (NH4SCN) can effectively passivate the defects, improve the crystallinity, and modulate the phase distribution of quasi-two-dimensional mixed-halide perovskite film, thereby increasing charge transport and luminescent efficiency. Notably, PL intensity of the 20%-NH4SCN sample is 1.7 times higher than that of the control sample, which is attributed to the defect passivation effect of NH4SCN probably due to the Lewis acid-base interaction with Pb2+. Meanwhile, the hole mobility of the 20%-NH4SCN sample is measured to be 1.31 × 10–5 cm2/(V·s), which is much higher than that of the control sample (3.58 × 10–6 cm2/(V·s)). As a result, sky-blue quasi-two-dimensional mixed-halide perovskite light-emitting diode with 20%-NH4SCN possesses an EL maximum at 486 nm and a maximum external quantum efficiency (EQE) of 5.83% and a luminance of 1258 cd/m2, which are 6.7 and 3.6 times higher than those of the control device without NH4SCN, respectively. At the same time, the EL spectra of the 20%-NH4SCN device are barely changed under different operating voltages, whereas the EL spectra of the control device show a 7–10 nm red-shift under the same condition, indicating that the NH4SCN addition inhibits halide phase separation and improves the EL spectrum stability. In addition, the T50 operational life-time of the 20%-NH4SCN device is measured to be about 110 s, which is superior to that of the control device (39 s) due to improved film quality of NH4SCN-modified sample. This research provides a simple and effective method to improve the performances of quasi-two-dimensional mixed-halide perovskite blue-emitting diodes.-
Keywords:
- quasi-two-dimensional mixed-halide perovskites /
- blue-emitting diodes /
- ammonium thiocyanate /
- defect passivation
[1] Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar
[2] Kovalenko, M V, Protesescu L, Bodnarchuk, M I 2017 Science 358 745Google Scholar
[3] Van Le Q, Jang H W, Kim S Y 2018 Small Methods 2 1700419Google Scholar
[4] Kumawat N K, Liu X K, Kabra D, Gao F 2019 Nanoscale 11 2109Google Scholar
[5] 段聪聪, 程露, 殷垚, 朱琳 2019 68 158503Google Scholar
Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar
[6] 吴海妍, 唐建新, 李艳青 2020 69 138502Google Scholar
Wu H Y, Tang J X, Li Y Q 2020 Acta Phys. Sin. 69 138502Google Scholar
[7] Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z 2020 ACS Energy Lett. 5 1062Google Scholar
[8] Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar
[9] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar
[10] Kim Y H, Kim S, Kakekhani A, Park J, Park J, Lee YH, Xu H, Nagane S, Wexler R B, Kim D H, Jo S H, Martínez-Sarti L, Tan P, Sadhanala A, Park GS, Kim Y W, Hu B, Bolink H J, Yoo S, Friend R H, Rappe A M, Lee T W 2021 Nat. Photonics 15 148Google Scholar
[11] Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar
[12] Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar
[13] Ren Z, Yu J, Qin Z, Wang J, Sun J, Chan C C S, Ding S, Wang K, Chen R, Wong K S, Lu X, Yin W J, Choy W C H 2021 Adv. Mater. 33 2005570Google Scholar
[14] Dong Y, Wang Y K, Yuan F, Johnston A, Liu Y, Ma D, Choi M J, Chen B, Chekini M, Baek S W, Sagar L K, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung H T, Saidaminov M I, Kumacheva E, Spiecker E, Liao L S, Voznyy O, Lu Z H, Sargent E H 2020 Nat. Nanotechnol. 15 668Google Scholar
[15] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[16] Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar
[17] Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar
[18] Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar
[19] Quan L N, Garcia de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar
[20] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar
[21] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S 2019 Adv. Mater. 31 1904319Google Scholar
[22] Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar
[23] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z a 2018 Adv. Funct. Mater. 28 1804187Google Scholar
[24] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar
[25] Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar
[26] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[27] Liu Y, Ono L K, Qi Y 2020 InfoMat 2 1095Google Scholar
[28] Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar
[29] Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar
[30] Fu W, Wang J, Zuo L, Gao K, Liu F, Ginger D S, Jen A K Y 2018 ACS Energy Lett. 3 2086Google Scholar
[31] Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar
[32] Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar
[33] Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar
[34] Leung T L, Tam H W, Liu F, Lin J, Ng A M C, Chan W K, Chen W, He Z, Lončarić I, Grisanti L, Ma C, Wong K S, Lau Y S, Zhu F, Skoko Ž, Popović J, Djurišić A B 2019 Adv. Opt. Mater. 8 1901679Google Scholar
[35] Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar
[36] deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar
[37] Pang P, Jin G, Liang C, Wang B, Xiang W, Zhang D, Xu J, Hong W, Xiao Z, Wang L, Xing G, Chen J, Ma D 2020 ACS Nano 14 11420Google Scholar
[38] Shen Y, Shen K C, Li Y Q, Guo M, Wang J, Ye Y, Xie F M, Ren H, Gao X, Song F, Tang J X 2020 Adv. Funct. Mater. 31 2006736Google Scholar
[39] Zhao X, Liu T, Kaplan A B, Yao C, Loo Y L 2020 Nano Lett. 20 8880Google Scholar
[40] Cai L, Liang D, Wang X, Zang J, Bai G, Hong Z, Zou Y, Song T, Sun B 2021 J. Phys. Chem. Lett. 12 1747Google Scholar
[41] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2018 Adv. Opt. Mater. 7 1801575Google Scholar
[42] Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar
[43] Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar
[44] Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar
-
图 5 (a) 不同NH4SCN浓度器件的归一化电致发光光谱; (b) 在不同电压下0% NH4SCN和 (c) 20% NH4SCN器件电致发光光谱, 插图给出20% NH4SCN器件的照片; (d) 在起始亮度为100 cd/m2下器件工作寿命特性
Fig. 5. (a) Normalized electroluminescence spectra of the devices with different NH4SCN concentrations; (b) normalized electroluminescence spectra of the 0% NH4SCN and (c) 20% NH4SCN devices under different operating voltages, the inset shows a photograph of a working 20% NH4SCN device; (d) operational life-time properties of the devices measured with an initial luminance of 100 cd/m2.
表 1 不同NH4SCN浓度钙钛矿薄膜的时间分辨光致发光的拟合参数总结
Table 1. Summarization of the fitting parameters for TRPL decay traces of the perovskite films with different NH4SCN concentrations.
NH4SCN
concentration$ A_1 $/% $ {\rm{\tau}}_1 $/ns $ A_2 $/% $ {\rm{\tau}}_2 $/ns ${\rm{\tau} }_{\rm avg}$/ns 0% 93.47 0.87 6.53 10.10 1.47 10% 87.47 2.92 12.53 27.13 5.95 20% 92.97 4.93 7.03 42.06 7.54 40% 89.05 4.27 10.95 30.98 7.19 -
[1] Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar
[2] Kovalenko, M V, Protesescu L, Bodnarchuk, M I 2017 Science 358 745Google Scholar
[3] Van Le Q, Jang H W, Kim S Y 2018 Small Methods 2 1700419Google Scholar
[4] Kumawat N K, Liu X K, Kabra D, Gao F 2019 Nanoscale 11 2109Google Scholar
[5] 段聪聪, 程露, 殷垚, 朱琳 2019 68 158503Google Scholar
Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar
[6] 吴海妍, 唐建新, 李艳青 2020 69 138502Google Scholar
Wu H Y, Tang J X, Li Y Q 2020 Acta Phys. Sin. 69 138502Google Scholar
[7] Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z 2020 ACS Energy Lett. 5 1062Google Scholar
[8] Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar
[9] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar
[10] Kim Y H, Kim S, Kakekhani A, Park J, Park J, Lee YH, Xu H, Nagane S, Wexler R B, Kim D H, Jo S H, Martínez-Sarti L, Tan P, Sadhanala A, Park GS, Kim Y W, Hu B, Bolink H J, Yoo S, Friend R H, Rappe A M, Lee T W 2021 Nat. Photonics 15 148Google Scholar
[11] Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar
[12] Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar
[13] Ren Z, Yu J, Qin Z, Wang J, Sun J, Chan C C S, Ding S, Wang K, Chen R, Wong K S, Lu X, Yin W J, Choy W C H 2021 Adv. Mater. 33 2005570Google Scholar
[14] Dong Y, Wang Y K, Yuan F, Johnston A, Liu Y, Ma D, Choi M J, Chen B, Chekini M, Baek S W, Sagar L K, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung H T, Saidaminov M I, Kumacheva E, Spiecker E, Liao L S, Voznyy O, Lu Z H, Sargent E H 2020 Nat. Nanotechnol. 15 668Google Scholar
[15] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[16] Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar
[17] Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar
[18] Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar
[19] Quan L N, Garcia de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar
[20] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar
[21] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S 2019 Adv. Mater. 31 1904319Google Scholar
[22] Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar
[23] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z a 2018 Adv. Funct. Mater. 28 1804187Google Scholar
[24] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar
[25] Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar
[26] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[27] Liu Y, Ono L K, Qi Y 2020 InfoMat 2 1095Google Scholar
[28] Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar
[29] Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar
[30] Fu W, Wang J, Zuo L, Gao K, Liu F, Ginger D S, Jen A K Y 2018 ACS Energy Lett. 3 2086Google Scholar
[31] Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar
[32] Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar
[33] Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar
[34] Leung T L, Tam H W, Liu F, Lin J, Ng A M C, Chan W K, Chen W, He Z, Lončarić I, Grisanti L, Ma C, Wong K S, Lau Y S, Zhu F, Skoko Ž, Popović J, Djurišić A B 2019 Adv. Opt. Mater. 8 1901679Google Scholar
[35] Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar
[36] deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar
[37] Pang P, Jin G, Liang C, Wang B, Xiang W, Zhang D, Xu J, Hong W, Xiao Z, Wang L, Xing G, Chen J, Ma D 2020 ACS Nano 14 11420Google Scholar
[38] Shen Y, Shen K C, Li Y Q, Guo M, Wang J, Ye Y, Xie F M, Ren H, Gao X, Song F, Tang J X 2020 Adv. Funct. Mater. 31 2006736Google Scholar
[39] Zhao X, Liu T, Kaplan A B, Yao C, Loo Y L 2020 Nano Lett. 20 8880Google Scholar
[40] Cai L, Liang D, Wang X, Zang J, Bai G, Hong Z, Zou Y, Song T, Sun B 2021 J. Phys. Chem. Lett. 12 1747Google Scholar
[41] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2018 Adv. Opt. Mater. 7 1801575Google Scholar
[42] Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar
[43] Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar
[44] Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar
计量
- 文章访问数: 5303
- PDF下载量: 117
- 被引次数: 0